期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
薄壁箱梁剪力滞翘曲位移函数的改进与对比分析 被引量:8
1
作者 张玉平 胡火全 +1 位作者 李传习 陈洪林 《应用力学学报》 CAS CSCD 北大核心 2016年第6期1099-1105,1126,共7页
基于能量变分原理,考虑箱梁横截面正应力轴向平衡条件和剪切变形的影响,构建了包含参数m的新剪力滞翘曲位移函数。以所得应力均方误差与挠度均方误差为精度标准,计算分析了不同m值(即不同幂次)抛物线下新构建剪力滞翘曲位移函数的适应性... 基于能量变分原理,考虑箱梁横截面正应力轴向平衡条件和剪切变形的影响,构建了包含参数m的新剪力滞翘曲位移函数。以所得应力均方误差与挠度均方误差为精度标准,计算分析了不同m值(即不同幂次)抛物线下新构建剪力滞翘曲位移函数的适应性,得出了二次抛物线形式较为精确合理的结论。通过比较典型位置所得应力值,进一步分析了新构建剪力滞翘曲位移函数(m=2)的适应性和精确性。针对所得集中荷载作用下简支箱梁翼缘悬臂板最外端应力有较大偏差的情况,通过应力曲线拟合,得到了集中荷载作用下简支箱梁悬臂板的应力改进公式。将应力改进后新构建剪力滞翘曲位移函数与基本翘曲位移函数所得的应力与竖向挠度进行比较,论证了通过本文新构建的剪力滞翘曲位移函数推导计算所得的应力公式和应力改进公式的高精度。 展开更多
关键词 桥梁工程 剪力滞翘曲位移函数 能量变分法 薄壁箱梁 抛物线
在线阅读 下载PDF
基于剪切变形的矩形梁剪力滞求解方法 被引量:10
2
作者 舒小娟 钟新谷 +1 位作者 沈明燕 张天予 《计算力学学报》 CAS CSCD 北大核心 2015年第4期518-522,共5页
Timoshenko梁通过假设截面的剪切刚度和附加平均剪切转角变形的方式来近似修正初等梁中未考虑剪切变形能的问题,这与梁剪应力沿梁高变化的实际不符。本文基于材料力学剪应力计算式和相应的剪切变形理论,从剪切变形与梁的位移关系入手,... Timoshenko梁通过假设截面的剪切刚度和附加平均剪切转角变形的方式来近似修正初等梁中未考虑剪切变形能的问题,这与梁剪应力沿梁高变化的实际不符。本文基于材料力学剪应力计算式和相应的剪切变形理论,从剪切变形与梁的位移关系入手,导出矩形梁考虑剪切变形时的纵向位移沿梁高方向的函数关系式,证明该位移可分解为纯弯曲引起的位移和剪力引起的剪力滞翘曲位移之和。应用剪力滞广义坐标与广义力的概念,基于能量变分原理得到等截面梁剪力滞控制微分方程组及其通解形式。对均布荷载作用下矩形简支梁的算例分析表明,本文算法与弹性力学精确解对比,两者的应力和挠度剪力滞系数求解结果非常接近,本文算法有足够的精度,且比弹性力学简单。 展开更多
关键词 剪切变形 剪力滞翘曲位移 能量变分 矩形梁 剪力系数
在线阅读 下载PDF
梁端约束条件对箱形梁剪力滞效应的影响 被引量:12
3
作者 张玉元 张元海 张慧 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第4期671-677,共7页
为了揭示梁端约束条件对箱形梁剪力滞效应的影响,选取剪力滞效应引起的附加挠度为广义位移,在箱形梁横截面上引入3个翘曲位移修正系数,运用能量变分法建立了关于附加挠度的控制微分方程及边界条件,导出了均布荷载作用下相应于不同梁端... 为了揭示梁端约束条件对箱形梁剪力滞效应的影响,选取剪力滞效应引起的附加挠度为广义位移,在箱形梁横截面上引入3个翘曲位移修正系数,运用能量变分法建立了关于附加挠度的控制微分方程及边界条件,导出了均布荷载作用下相应于不同梁端约束条件的箱形梁剪力滞系数和附加挠度解析解.结合数值算例,详细分析了梁端约束条件对剪力滞系数和附加挠度的影响.研究结果表明:该研究计算结果与有限元计算结果吻合良好;梁端约束程度越强,剪力滞系数横、纵向分布曲线越陡峭,剪力滞附加挠度纵向分布曲线越平缓;正、负弯矩区的剪力滞系数纵向分布规律与相应的简支箱梁和悬臂箱梁类似;与简支箱梁相比,一端固定另一端简支的箱梁和两端固定的箱梁跨中截面顶板与腹板交汇处的剪力滞系数分别增大了12.86%和25.63%,跨中截面的剪力滞附加挠度分别减小了13.79%和25.60%. 展开更多
关键词 薄壁箱梁 剪力滞翘曲 梁端约束条件 能量变分法 附加挠度 剪力系数
在线阅读 下载PDF
箱形梁剪力滞效应的分离求解方法及参数影响分析 被引量:6
4
作者 张玉元 张元海 张慧 《应用数学和力学》 CSCD 北大核心 2018年第11期1282-1291,共10页
选取剪力滞效应引起的附加挠度为广义位移,将箱梁的剪力滞变形状态从初等梁挠曲变形状态中分离出来,作为一种独立的变形状态进行分析,运用能量变分法建立了以附加挠度为未知量的截面控制微分方程及边界条件;结合简支边界条件分别导出了... 选取剪力滞效应引起的附加挠度为广义位移,将箱梁的剪力滞变形状态从初等梁挠曲变形状态中分离出来,作为一种独立的变形状态进行分析,运用能量变分法建立了以附加挠度为未知量的截面控制微分方程及边界条件;结合简支边界条件分别导出了集中荷载和均布荷载作用下箱梁的附加挠度和纵向应力计算公式.纵向应力分析表明:该文方法计算的应力结果和样条函数法计算的应力结果吻合良好,从而验证了其方法的正确性.挠度研究表明:剪力滞附加挠度由跨中向两侧支点递减;针对于该文算例而言,均布荷载和集中荷载作用下跨中截面的剪力滞附加挠度分别占初等梁挠度的2. 57%和3. 03%;随着高跨比和宽跨比的增大,相应箱梁跨中截面的附加挠度逐渐减小,且宽跨比对附加挠度的影响远大于高跨比的影响. 展开更多
关键词 薄壁箱梁 剪力滞翘曲 初等梁理论 附加挠度 能量变分法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部