期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进SSA-KELM模型在埋地腐蚀管道剩余寿命预测中的应用
被引量:
2
1
作者
骆正山
徐龙寅
骆济豪
《热加工工艺》
北大核心
2023年第20期19-24,共6页
为提高埋地腐蚀管道剩余寿命预测精度,构建其剩余寿命预测模型。建立基于核主成分分析(KPCA)和改进麻雀搜索算法(ISSA)的核极限学习机(KELM)剩余寿命预测模型。首先采用KPCA预处理原始数据,提取埋地腐蚀管道主要特征向量并重构评价指标...
为提高埋地腐蚀管道剩余寿命预测精度,构建其剩余寿命预测模型。建立基于核主成分分析(KPCA)和改进麻雀搜索算法(ISSA)的核极限学习机(KELM)剩余寿命预测模型。首先采用KPCA预处理原始数据,提取埋地腐蚀管道主要特征向量并重构评价指标。其次针对SSA易陷入局部最优及迭代后期抗停滞性能降低等缺陷,提出SSA改进方案:利用Tent混沌提升其遍历性;引入自适应安全值调整麻雀搜索区域;使用高斯扰动重点搜索最优解附近区域,以提升SSA全局寻优能力。再次利用ISSA寻优KELM中核参数和惩罚系数,最终构建KPCA-ISSA-KELM埋地腐蚀管道剩余寿命预测模型。以某埋地管线为例进行仿真,结果表明:KPCA-ISSA-KELM模型预测结果均方误差、平均绝对误差值、决定系数为分别为0.249、0.096、0.998,均优于其他模型。证明KPCA-ISSA-KELM的埋地腐蚀管道剩余寿命预测模型具有较强的鲁棒性,为管道系统研究提供重要的参考依据。
展开更多
关键词
管道
剩余
寿命
核主成分分析法
改进的麻雀搜索算法
核极限学习机
剩余寿命预测模型
在线阅读
下载PDF
职称材料
基于DRN-BiGRU模型的滚动轴承剩余寿命预测
被引量:
12
2
作者
陈倩倩
林天然
《机电工程》
CAS
北大核心
2022年第11期1575-1581,共7页
深度神经网络在剩余寿命预测(RUL)领域已获得了广泛应用,为进一步优化预测模型,充分提取数据间的时序信息,提高寿命预测的准确率,提出了一种结合深度残差网络(DRN)和双向门控循环单元(BiGRU)的剩余寿命预测(RUL)模型。首先,采用滑窗法...
深度神经网络在剩余寿命预测(RUL)领域已获得了广泛应用,为进一步优化预测模型,充分提取数据间的时序信息,提高寿命预测的准确率,提出了一种结合深度残差网络(DRN)和双向门控循环单元(BiGRU)的剩余寿命预测(RUL)模型。首先,采用滑窗法对原始数据进行了重采样,对数据集进行了扩充;然后,设计了一种DRN-BiGRU网络模型,其中,利用DRN对输入数据进行空间特征提取,利用BiGRU捕获时域数据中包含的过去和未来两方向的相关特征,充分获取输入数据的时序退化信息,进一步改善了模型的特征提取效果;最后,采用公开发表的PHM2012数据集对模型进行了验证,并将得到的预测结果与采用DRN、DRN-GRU和全卷积神经网络(FCNN)模型获得的结果进行了对比。研究结果表明:在滚动轴承剩余寿命预测应用中,采用基于DRN-BiGRU模型的方法获得的3项误差值(MAE、MSE、RMSE)最低,预测Score值最高,分值为0.985;该结果验证了基于DRN-BiGRU模型在轴承剩余寿命预测应用方面的准确性和有效性。
展开更多
关键词
预测
与健康管理
数据驱动
预测
方法
剩余寿命预测模型
深度残差网络
双向门控循环单元
轴承加速退化数据集
在线阅读
下载PDF
职称材料
题名
改进SSA-KELM模型在埋地腐蚀管道剩余寿命预测中的应用
被引量:
2
1
作者
骆正山
徐龙寅
骆济豪
机构
西安建筑科技大学管理学院
北京理工大学睿信学院
出处
《热加工工艺》
北大核心
2023年第20期19-24,共6页
基金
国家自然科学基金资助项目(41877527)
陕西省社科基金资助项目(2018S34)。
文摘
为提高埋地腐蚀管道剩余寿命预测精度,构建其剩余寿命预测模型。建立基于核主成分分析(KPCA)和改进麻雀搜索算法(ISSA)的核极限学习机(KELM)剩余寿命预测模型。首先采用KPCA预处理原始数据,提取埋地腐蚀管道主要特征向量并重构评价指标。其次针对SSA易陷入局部最优及迭代后期抗停滞性能降低等缺陷,提出SSA改进方案:利用Tent混沌提升其遍历性;引入自适应安全值调整麻雀搜索区域;使用高斯扰动重点搜索最优解附近区域,以提升SSA全局寻优能力。再次利用ISSA寻优KELM中核参数和惩罚系数,最终构建KPCA-ISSA-KELM埋地腐蚀管道剩余寿命预测模型。以某埋地管线为例进行仿真,结果表明:KPCA-ISSA-KELM模型预测结果均方误差、平均绝对误差值、决定系数为分别为0.249、0.096、0.998,均优于其他模型。证明KPCA-ISSA-KELM的埋地腐蚀管道剩余寿命预测模型具有较强的鲁棒性,为管道系统研究提供重要的参考依据。
关键词
管道
剩余
寿命
核主成分分析法
改进的麻雀搜索算法
核极限学习机
剩余寿命预测模型
Keywords
pipeline remaining life
kernel principal component analysis
improved sparrow search algorithm
kernel extreme learning machine
residual life prediction model
分类号
TG172 [金属学及工艺—金属表面处理]
在线阅读
下载PDF
职称材料
题名
基于DRN-BiGRU模型的滚动轴承剩余寿命预测
被引量:
12
2
作者
陈倩倩
林天然
机构
青岛理工大学机械与汽车工程学院
出处
《机电工程》
CAS
北大核心
2022年第11期1575-1581,共7页
基金
国家科技部高等学校学科创新引智计划项目(D21017)
青岛市创新领军人才项目(181219ZHC)。
文摘
深度神经网络在剩余寿命预测(RUL)领域已获得了广泛应用,为进一步优化预测模型,充分提取数据间的时序信息,提高寿命预测的准确率,提出了一种结合深度残差网络(DRN)和双向门控循环单元(BiGRU)的剩余寿命预测(RUL)模型。首先,采用滑窗法对原始数据进行了重采样,对数据集进行了扩充;然后,设计了一种DRN-BiGRU网络模型,其中,利用DRN对输入数据进行空间特征提取,利用BiGRU捕获时域数据中包含的过去和未来两方向的相关特征,充分获取输入数据的时序退化信息,进一步改善了模型的特征提取效果;最后,采用公开发表的PHM2012数据集对模型进行了验证,并将得到的预测结果与采用DRN、DRN-GRU和全卷积神经网络(FCNN)模型获得的结果进行了对比。研究结果表明:在滚动轴承剩余寿命预测应用中,采用基于DRN-BiGRU模型的方法获得的3项误差值(MAE、MSE、RMSE)最低,预测Score值最高,分值为0.985;该结果验证了基于DRN-BiGRU模型在轴承剩余寿命预测应用方面的准确性和有效性。
关键词
预测
与健康管理
数据驱动
预测
方法
剩余寿命预测模型
深度残差网络
双向门控循环单元
轴承加速退化数据集
Keywords
prognostic and health management(PHM)
data driven forecasting method
remaining useful life(RUL)prediction model
deep residual network(DRN)
bidirectional gated recurrent unit(BiGRU)
bearing accelerated degradation dataset
分类号
TH133.33 [机械工程—机械制造及自动化]
TH17 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进SSA-KELM模型在埋地腐蚀管道剩余寿命预测中的应用
骆正山
徐龙寅
骆济豪
《热加工工艺》
北大核心
2023
2
在线阅读
下载PDF
职称材料
2
基于DRN-BiGRU模型的滚动轴承剩余寿命预测
陈倩倩
林天然
《机电工程》
CAS
北大核心
2022
12
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部