期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据挖掘与深度语义模型的工艺序列推荐方法
1
作者 郑佳辉 郭宇 +3 位作者 吴涛 王胜博 黄少华 郑凯文 《图学学报》 北大核心 2025年第4期864-873,共10页
为了应对航空制造工艺设计中传统的“经验驱动”方法面临的“数据超载”问题,难以实现航空复杂零件的智能化工艺设计,提出一种基于数据挖掘与深度语义模型的工艺序列推荐方法。通过采用PrefixSpan算法与BERT大语言模型相结合从零件实例... 为了应对航空制造工艺设计中传统的“经验驱动”方法面临的“数据超载”问题,难以实现航空复杂零件的智能化工艺设计,提出一种基于数据挖掘与深度语义模型的工艺序列推荐方法。通过采用PrefixSpan算法与BERT大语言模型相结合从零件实例数据中挖掘典型制造工艺序列及其相关能力,构建了可重用、可更新的制造工艺知识库。在此基础上,针对航空制造数据的特点提出了一种改进的空间通道注意力机制,进行零件实例数据隐式特征提取,同时针对零件实例不均衡分布导致的“冷启动”问题,结合自监督学习挖掘数据的深层结构,保证模型泛化能力和小样本实例的学习能力。通过基于双通道注意力的深度语义模型与自监督学习相结合的方法,使得模型在数据不平衡的情况下更好地提取特征、学习知识以及准确地推荐更加符合航空工艺设计的工艺序列。以某航空零件为例,进行了制造工艺序列的推荐与验证。实验结果表明,该方法在制造工艺序列推荐的各项指标上均优于基准模型,验证了该方法的有效性,且能满足航空工艺设计人员的智能化工艺设计需求。 展开更多
关键词 数据挖掘 自监督学习 深度语义模型 航空复杂零件 制造序列推荐
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部