Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed...Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.展开更多
Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a ...Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.展开更多
To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated....To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.展开更多
The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control sys...The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for u...The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.展开更多
Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers: the first to estimate the feedback lin...Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers: the first to estimate the feedback linearization error based on the full state information and the second to estimate the unmeasured states of the system when only the system output is available for feedback. All the signals in the closed loop are guaranteed to be uniformly ultimately bounded(UUB) and the output of the system is proven to converge to a small neighborhood of the origin. The proposed approach not only handles the difficulty in controlling non-affine nonlinear systems but also simplifies the stability analysis of the closed loop due to its linear control structure. Simulation results show the effectiveness of the approach.展开更多
The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unsta...The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.展开更多
A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback c...A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach.展开更多
The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii function...The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.展开更多
基金Project(51476187)supported by the National Natural Science Foundation of China
文摘Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.
基金Project(61273344)supported by the National Natural Science Foundation of ChinaProject(SKLRS-2010-ZD-40)supported by the StateKey Laboratory of Robotics and Systems(HIT),China+1 种基金Project(2008AA04Z208)supported by the National Hi-tech Research and Development Program of ChinaProject(20121101110011)supported by PhD Program Foundation of Ministry of Education,China
文摘Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.
基金Project(61025015)supported by the National Natural Science Foundation of China for Distinguished Young ScholarsProject (IRT1044)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China+2 种基金Projects(61143004,61203136,61074067,61273185)supported by the National Natural Science Foundation of ChinaProjects(12JJ4062,11JJ2033)supported by the Natural Science Foundation of Hunan Province,ChinaProject(12C0078)supported by Hunan Provincial Department of Education,China
文摘The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
基金Project(2013M540271)supported by the Postdoctoral Science Foundation of ChinaProject(HEUCF1321003)support by the Basic Research Foundation of Central University,ChinaProject(51209050)supported by the National Natural Science Foundation of China
文摘The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.
基金Project(60974047)supported by the National Natural Science Foundation of ChinaProject(S2012010008967)supported by the Natural Science Foundation of Guangdong Province,China+4 种基金Project supported by the Science Fund for Distinguished Young Scholars,ChinaProject supported by 2011 Zhujiang New Star Fund,ChinaProject(121061)supported by FOK Ying Tung Education Foundation of ChinaProject supported by the Ministry of Education for New Century Excellent Talent,ChinaProject(20124420130001)supported by the Doctoral Fund of Ministry of Education of China
文摘Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers: the first to estimate the feedback linearization error based on the full state information and the second to estimate the unmeasured states of the system when only the system output is available for feedback. All the signals in the closed loop are guaranteed to be uniformly ultimately bounded(UUB) and the output of the system is proven to converge to a small neighborhood of the origin. The proposed approach not only handles the difficulty in controlling non-affine nonlinear systems but also simplifies the stability analysis of the closed loop due to its linear control structure. Simulation results show the effectiveness of the approach.
基金Projects(61074112,60674044) supported by the National Natural Science Foundation of China
文摘The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.
基金Project(61433004)suppouted by the National Natural Science Foundation of China
文摘A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach.
文摘The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.