With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage techno...With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.展开更多
A novel 0.1% Pd-0.05% (mass fraction) Pt/stainless steel wire mesh catalyst was prepared for volatile organic compounds (VOCs) elimination. The catalyst was synthesized by stainless steel wire mesh as support and ...A novel 0.1% Pd-0.05% (mass fraction) Pt/stainless steel wire mesh catalyst was prepared for volatile organic compounds (VOCs) elimination. The catalyst was synthesized by stainless steel wire mesh as support and then treated by anodic oxidation technology to develop a porous membrane on the support. During the anodic oxidation process, various electrolytes were used to investigate the formation of porous membrane. And the catalytic performance of the catalysts was tested by using toluene and acetone combustion as model reaction. The temperatures of complete toluene and acetone conversion were decreased to 180℃ and 240 ℃, respectively. The morphologies of the stainless steel wire mesh supports and catalysts were characterized by means of scanning electron microscopy (SEM) and temperature-programmed reduction (TPR).展开更多
基金supported by the Natural Science Basic Research Plan in the Shaanxi Province of China(No.2023-JC-ZD-25)Shaanxi Province(Qin ChuangYuan)“Scientist+Engineer”Team Building(No.2022KXJ-040)+1 种基金Shaanxi Provincial Department of Education Key Scientific Research Project(No.22JY024)Science and Technology Guidance Project Plan of China National Textile and Apparel Council(No.2022038,2023018).
文摘With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.
基金Project(2009C21001)supported by the Science and Technology Program of Zhejiang Province,China
文摘A novel 0.1% Pd-0.05% (mass fraction) Pt/stainless steel wire mesh catalyst was prepared for volatile organic compounds (VOCs) elimination. The catalyst was synthesized by stainless steel wire mesh as support and then treated by anodic oxidation technology to develop a porous membrane on the support. During the anodic oxidation process, various electrolytes were used to investigate the formation of porous membrane. And the catalytic performance of the catalysts was tested by using toluene and acetone combustion as model reaction. The temperatures of complete toluene and acetone conversion were decreased to 180℃ and 240 ℃, respectively. The morphologies of the stainless steel wire mesh supports and catalysts were characterized by means of scanning electron microscopy (SEM) and temperature-programmed reduction (TPR).