A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient...A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.展开更多
An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasi...An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasible.Based on the design of finger,a prosthetic hand is designed.The hand is composed of 5 independent fingers and it looks more like humanoid.Its size is about 85% of an adult's hand and weights about 350 g.Except the thumb finger,each finger is actuated by one DC motor,gear head and a tendon,and has three curling/extension joints.The thumb finger which is different from other existing prostheses is a novel design scheme.The thumb finger has four joints including three curling/extension joints and a joint which is used to realize the motion of the thumb related to the palm,and these joints are also driven by one DC motor,harmonic drive and a tendon.The underactuation and adaptive curling/extension motion of the finger are realized by joint torsion springs.A high-powered chip of digital signal processing(DSP)is the main part of the electrical system which is used for the motors control,data collection,communication with external controlling source,and so on.To improve the reliability of the hand,structures and sensors are designed and made as simply as possible.The hand has strong manipulation capabilities that have been verified by finger motion and grasping tests and it can satisfy the daily operational needs and psychological needs of deformities.展开更多
Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th...Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.展开更多
文摘A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.
基金Project(2008AA04Z203)supported by National High Technology Research and Development Program of China
文摘An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasible.Based on the design of finger,a prosthetic hand is designed.The hand is composed of 5 independent fingers and it looks more like humanoid.Its size is about 85% of an adult's hand and weights about 350 g.Except the thumb finger,each finger is actuated by one DC motor,gear head and a tendon,and has three curling/extension joints.The thumb finger which is different from other existing prostheses is a novel design scheme.The thumb finger has four joints including three curling/extension joints and a joint which is used to realize the motion of the thumb related to the palm,and these joints are also driven by one DC motor,harmonic drive and a tendon.The underactuation and adaptive curling/extension motion of the finger are realized by joint torsion springs.A high-powered chip of digital signal processing(DSP)is the main part of the electrical system which is used for the motors control,data collection,communication with external controlling source,and so on.To improve the reliability of the hand,structures and sensors are designed and made as simply as possible.The hand has strong manipulation capabilities that have been verified by finger motion and grasping tests and it can satisfy the daily operational needs and psychological needs of deformities.
基金Project(51205415)supported by the National Natural Science Foundation of ChinaProject(14JJ3020)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2013M542129)supported by China Postdoctoral Science FoundationProject(2012QNZT014)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Postdoctoral Foundation of Central South University,China
文摘Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.