A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake wa...A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.展开更多
Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th...Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.展开更多
A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale tw...A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper, on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprtmg mass by about 15% and 24%, respectively.展开更多
文摘A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.
基金Project(51205415)supported by the National Natural Science Foundation of ChinaProject(14JJ3020)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2013M542129)supported by China Postdoctoral Science FoundationProject(2012QNZT014)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Postdoctoral Foundation of Central South University,China
文摘Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.
基金Project(51175265) supported by the National Natural Science Foundation of ChinaProject(CX10B_114Z) supported by Jiangsu College Graduate Research and Innovation Program,China+1 种基金Project(BK2008415) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(Y1110313) supported by the Natural Science Foundation of Zhejiang Province,China
文摘A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper, on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprtmg mass by about 15% and 24%, respectively.