密度峰值聚类(density peaks clustering,DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而,DPC仍存在些许不足:一方面,DPC算法仅考虑全局分布,在类簇密度差距较大的数据...密度峰值聚类(density peaks clustering,DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而,DPC仍存在些许不足:一方面,DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面,DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors,KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果.展开更多
目前经典的聚类算法在内存空间有限的情况下,聚类受到时间、空间等各方面的限制,提出一种基于代表点的快速聚类算法FCBRP(fast clustering based representative points).首先,判定数据集中所有节点的属性,当节点的D临域内存在大于等于...目前经典的聚类算法在内存空间有限的情况下,聚类受到时间、空间等各方面的限制,提出一种基于代表点的快速聚类算法FCBRP(fast clustering based representative points).首先,判定数据集中所有节点的属性,当节点的D临域内存在大于等于K个邻居节点时,将其定义为代表点,代表点D临域内所有邻居节点与该代表点之间的平均欧氏距离即为该代表点的相关密度RD,所有的代表点组成代表点集合;将所有在代表点的D临域内的节点定义为能被代表的节点,并将其进行存储;既不是代表点、又不能被其它节点所代表的节点,将其定义为噪音节点;其次,对代表点集合进行聚类,对于给定的密度标准α,如果两个代表点满足密度相关,即两个代表点的相关密度分别乘以密度标准α后同时大于等于两者之间的欧氏距离,则将其划分到同一类簇中,通过对代表点的聚类,达到对数据的区域划分,得到所有类簇的基本形状;最后,对于被其它代表点所代表的节点,通过检测代表它们的代表点所属的类簇,判定被代表的节点所属的类簇,对于少数位于不同类簇中的代表点的D临域内的节点,将其划分到相对距离较近的代表点所属的类簇中.实验证明,FCBRP算法对空间需求较小,效率快,精度高,鲁棒性更佳.展开更多
多视角数据的涌现对传统单视角聚类算法提出了挑战.利用单视角聚类算法独立地对每个视角进行划分,再通过集成机制获取全局划分的方法,人为地割裂了视角之间的内在联系,难以获得理想的聚类效果.针对此问题,提出了一个多视角聚类模型.该...多视角数据的涌现对传统单视角聚类算法提出了挑战.利用单视角聚类算法独立地对每个视角进行划分,再通过集成机制获取全局划分的方法,人为地割裂了视角之间的内在联系,难以获得理想的聚类效果.针对此问题,提出了一个多视角聚类模型.该模型不仅考虑了视角内的划分质量,还兼顾了视角间的协同学习机制.对于视角内的划分,为了捕捉更为准确的簇内结构信息,采用多代表点的簇结构表示策略;对于视角间的协同学习机制,假设簇中代表点在不同视角下,其代表性保持.因此,在该模型基础上提出了基于代表点一致性约束的多视角模糊聚类算法(multi-view fuzzy clustering with a medoid invariant constraint,简称MFCMddI).该算法通过最大化两两相邻视角下代表点权重系数的乘积之和来保证代表点一致性.MFCMddI的目标函数可通过引入拉格朗日乘子和KKT条件进行优化.在人工数据集以及真实数据集上的实验结果均表明,该算法相对于所引入的对比算法而言具有一定的优势.展开更多
为了提高传统CURE(clustering using representatives)聚类算法的质量,引入信息熵对其进行改进。该算法使用K-means算法对样本数据集进行预聚类;采用基于信息熵的相似性度量,利用簇中元素提供的信息度量不同簇之间的相互关系,并描述数...为了提高传统CURE(clustering using representatives)聚类算法的质量,引入信息熵对其进行改进。该算法使用K-means算法对样本数据集进行预聚类;采用基于信息熵的相似性度量,利用簇中元素提供的信息度量不同簇之间的相互关系,并描述数据的分布;在高、低层聚类阶段,采取不同的选取策略,分别选取相应的代表点。在UCI和人造数据集上的实验结果表明,提出的算法在一定程度上提高了聚类的准确率,且在大型数据集上比传统CURE算法有着更高的聚类效率。展开更多
文摘密度峰值聚类(density peaks clustering,DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而,DPC仍存在些许不足:一方面,DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面,DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors,KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果.
文摘目前经典的聚类算法在内存空间有限的情况下,聚类受到时间、空间等各方面的限制,提出一种基于代表点的快速聚类算法FCBRP(fast clustering based representative points).首先,判定数据集中所有节点的属性,当节点的D临域内存在大于等于K个邻居节点时,将其定义为代表点,代表点D临域内所有邻居节点与该代表点之间的平均欧氏距离即为该代表点的相关密度RD,所有的代表点组成代表点集合;将所有在代表点的D临域内的节点定义为能被代表的节点,并将其进行存储;既不是代表点、又不能被其它节点所代表的节点,将其定义为噪音节点;其次,对代表点集合进行聚类,对于给定的密度标准α,如果两个代表点满足密度相关,即两个代表点的相关密度分别乘以密度标准α后同时大于等于两者之间的欧氏距离,则将其划分到同一类簇中,通过对代表点的聚类,达到对数据的区域划分,得到所有类簇的基本形状;最后,对于被其它代表点所代表的节点,通过检测代表它们的代表点所属的类簇,判定被代表的节点所属的类簇,对于少数位于不同类簇中的代表点的D临域内的节点,将其划分到相对距离较近的代表点所属的类簇中.实验证明,FCBRP算法对空间需求较小,效率快,精度高,鲁棒性更佳.
文摘多视角数据的涌现对传统单视角聚类算法提出了挑战.利用单视角聚类算法独立地对每个视角进行划分,再通过集成机制获取全局划分的方法,人为地割裂了视角之间的内在联系,难以获得理想的聚类效果.针对此问题,提出了一个多视角聚类模型.该模型不仅考虑了视角内的划分质量,还兼顾了视角间的协同学习机制.对于视角内的划分,为了捕捉更为准确的簇内结构信息,采用多代表点的簇结构表示策略;对于视角间的协同学习机制,假设簇中代表点在不同视角下,其代表性保持.因此,在该模型基础上提出了基于代表点一致性约束的多视角模糊聚类算法(multi-view fuzzy clustering with a medoid invariant constraint,简称MFCMddI).该算法通过最大化两两相邻视角下代表点权重系数的乘积之和来保证代表点一致性.MFCMddI的目标函数可通过引入拉格朗日乘子和KKT条件进行优化.在人工数据集以及真实数据集上的实验结果均表明,该算法相对于所引入的对比算法而言具有一定的优势.
文摘为了提高传统CURE(clustering using representatives)聚类算法的质量,引入信息熵对其进行改进。该算法使用K-means算法对样本数据集进行预聚类;采用基于信息熵的相似性度量,利用簇中元素提供的信息度量不同簇之间的相互关系,并描述数据的分布;在高、低层聚类阶段,采取不同的选取策略,分别选取相应的代表点。在UCI和人造数据集上的实验结果表明,提出的算法在一定程度上提高了聚类的准确率,且在大型数据集上比传统CURE算法有着更高的聚类效率。