期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于迁移学习的零样本故障诊断 被引量:3
1
作者 吴天舒 尹宏鹏 +1 位作者 赵丹丹 蔡力 《电子学报》 EI CAS CSCD 北大核心 2023年第9期2572-2577,共6页
针对工业故障诊断中设备故障数据采集困难,目标故障样本少的问题,现有的零样本故障诊断方法仍依赖于故障数据集,本文提出了一种基于迁移学习的零样本故障诊断方法.通过经典的主成分分析算法,构建了一个适用于源域和目标域的判别属性提取... 针对工业故障诊断中设备故障数据采集困难,目标故障样本少的问题,现有的零样本故障诊断方法仍依赖于故障数据集,本文提出了一种基于迁移学习的零样本故障诊断方法.通过经典的主成分分析算法,构建了一个适用于源域和目标域的判别属性提取器,用于提取源域数据样本潜在的细粒度特征表示,将其作为知识迁移的桥梁.利用源域故障数据获得所有已知故障类的共享细粒度基组,并将其作为知识迁移到目标域故障表示中.从共享细粒度基组学习源域和目标域的判别矩阵,构建各自的判别性特征,最终利用判别性属性实现零样本的故障诊断.基于田纳西-伊斯曼过程(Tennessee Eastrman Process,TEP)数据集,实验对本文方法和其他零样本故障诊断方法进行对比,实验结果验证了本文方法对零样本故障检测的有效性. 展开更多
关键词 故障诊断 零样本 迁移学习 细粒度知识 判别表示
在线阅读 下载PDF
基于大间隔编码的空间非负矩阵分解 被引量:1
2
作者 刘大琨 谭晓阳 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期120-125,共6页
虽然基于局部的表示方法在图像处理中具有很好的鲁棒性,但非负矩阵分解只有隐式局部约束,导致分解不唯一和基图像不够局部.另外,局部性与判别性作为样本表示的重要性质几乎没有在非负矩阵分解中被同时考虑过.为此,文中提出了基于大间隔... 虽然基于局部的表示方法在图像处理中具有很好的鲁棒性,但非负矩阵分解只有隐式局部约束,导致分解不唯一和基图像不够局部.另外,局部性与判别性作为样本表示的重要性质几乎没有在非负矩阵分解中被同时考虑过.为此,文中提出了基于大间隔编码的空间非负矩阵分解,将图像数据看作像素构成的二维网络,借鉴网络中的知识将空间信息嵌入基图像,不但施加了显式的局部约束,而且能够弥补数据向量化损失的空间信息.同时,利用大间隔约束学到的额外一维空间平衡重建误差和判别性约束对基图像的影响.在AR数据库和扩展的Yale B数据库上的人脸识别实验结果表明,相比于非负矩阵及其他几种典型的扩展方法,基于大间隔编码的空间非负矩阵分解更加鲁棒. 展开更多
关键词 模式分类 非负矩阵分解 空间约束 判别的子空间表示 大间隔约束
在线阅读 下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
3
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
在线阅读 下载PDF
Discriminant embedding by sparse representation and nonparametric discriminant analysis for face recognition
4
作者 杜春 周石琳 +2 位作者 孙即祥 孙浩 王亮亮 《Journal of Central South University》 SCIE EI CAS 2013年第12期3564-3572,共9页
A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DE... A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DESN, the sparse local scatter and multi-class nonparametric between-class scatter were exploited for within-class compactness and between-class separability description, respectively. These descriptions, inspired by sparse representation theory and nonparametric technique, are more discriminative in dealing with complex-distributed data. Furthermore, DESN seeks for the optimal projection matrix by simultaneously maximizing the nonparametric between-class scatter and minimizing the sparse local scatter. The use of Fisher discriminant analysis further boosts the discriminating power of DESN. The proposed DESN was applied to data visualization and face recognition tasks, and was tested extensively on the Wine, ORL, Yale and Extended Yale B databases. Experimental results show that DESN is helpful to visualize the structure of high-dimensional data sets, and the average face recognition rate of DESN is about 9.4%, higher than that of other algorithms. 展开更多
关键词 dimensionality reduction sparse representation nonparametric discriminant analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部