期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
基于判别改进局部切空间排列特征融合的人脸识别方法 被引量:7
1
作者 张强 戚春 蔡云泽 《电子与信息学报》 EI CSCD 北大核心 2012年第10期2396-2401,共6页
改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA,DILTSA... 改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA,DILTSA能够同时保持类内与类间局部判别几何结构。此外,提出一种增强型Gabor-like复数小波变换以缓解照明和表情变化对人脸识别的影响。通过融合Gabor-like复数小波变换和原始图像特征,能够进一步提高人脸识别的准确率。在Yale和PIE人脸数据库上的实验结果证明了所提方法的有效性。 展开更多
关键词 人脸识别 流形学习 线性逼近 判别改进局部切空间排列 增强型Gabor—like复数小波变换 特征融合
在线阅读 下载PDF
基于改进局部切空间排列的流形学习算法 被引量:9
2
作者 杜春 邹焕新 +2 位作者 孙即祥 周石琳 赵晶晶 《电子与信息学报》 EI CSCD 北大核心 2014年第2期277-284,共8页
局部切空间排列是一种广受关注的流形学习算法,其具备实现简单、全局最优等特点,但其难以有效处理稀疏采样或非均匀分布的高维观测数据。针对这一问题,该文提出一种改进的局部切空间排列算法。首先,提出一种基于L1范数的局部切空间估计... 局部切空间排列是一种广受关注的流形学习算法,其具备实现简单、全局最优等特点,但其难以有效处理稀疏采样或非均匀分布的高维观测数据。针对这一问题,该文提出一种改进的局部切空间排列算法。首先,提出一种基于L1范数的局部切空间估计方法,由于同时考虑了距离和结构因素,该方法得到的切空间较主成分分析方法更为准确。其次,在坐标排列步骤为了减小排列误差,设计了一种基于流形结构的加权坐标排列方案,并给出了具体的求解方法。基于人造数据和真实数据的实验表明,该算法能够有效地处理稀疏和非均匀分布的流形数据。 展开更多
关键词 模式识别 流形学习 降维 局部空间排列(LTSA) L1范数
在线阅读 下载PDF
基于线性局部切空间排列维数化简的故障诊断 被引量:35
3
作者 李锋 汤宝平 陈法法 《振动与冲击》 EI CSCD 北大核心 2012年第13期36-40,61,共6页
为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregres... 为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregression,AR)模型系数构造全面表征不同故障特性的混合域特征集,再利用LLTSA将高维混合域特征集化简为故障区分度更好的低维特征矢量,并输入到最近邻分类器(K-nearest Neighbors Classifier,KNNC)中进行故障模式识别。所提出的诊断模型充分融合混合域特征融合在故障特征的全面提取、LLTSA在信息的有效化简及KNNC在分类决策方面的优势,实现诊断方法的自动化、高识别率及较好的通用性。用深沟球轴承不同部位、不同程度故障诊断实例验证该模型的有效性。 展开更多
关键词 混合域特征融合 线性局部空间排列 维数化简 最近邻分类器 故障诊断
在线阅读 下载PDF
基于局部切空间排列与MSVM的齿轮箱故障诊断 被引量:15
4
作者 陈法法 汤宝平 苏祖强 《振动与冲击》 EI CSCD 北大核心 2013年第5期38-42,47,共6页
针对齿轮箱故障特征重叠难以有效分离问题,提出基于局部切空间排列与多核支持向量机的齿轮箱故障诊断模型。在由振动信号时域统计指标及内禀模态分量能量构造的多元特征空间中,据局部切空间排列算法对多元特征进行非线性降维处理,得到... 针对齿轮箱故障特征重叠难以有效分离问题,提出基于局部切空间排列与多核支持向量机的齿轮箱故障诊断模型。在由振动信号时域统计指标及内禀模态分量能量构造的多元特征空间中,据局部切空间排列算法对多元特征进行非线性降维处理,得到初始低维流形结构,获取最优敏感特征向量;将该特征向量输入至多核支持向量机进行学习训练与故障辨识。局部切空间排列能克服传统降维方法的不足,多核支持向量机可实现复杂故障高精度、自动化智能诊断。通过齿轮箱故障模拟实验验证该方法的有效性。 展开更多
关键词 局部空间排列 多核学习 支持向量机 齿轮箱 故障诊断
在线阅读 下载PDF
增量式监督局部切空间排列算法及齿轮箱故障诊断实验验证 被引量:6
5
作者 佘博 田福庆 +1 位作者 梁伟阁 汤健 《振动与冲击》 EI CSCD 北大核心 2018年第13期105-110,129,共7页
针对局部切空间排列算法面临的无法利用样本标签信息和不能高效处理增量式维数约简问题,提出一种新的增量式监督局部切空间排列算法(Incremental Supervised Local Tangent Space Alignment,ISLTSA)。为充分利用训练样本标签信息,在LTS... 针对局部切空间排列算法面临的无法利用样本标签信息和不能高效处理增量式维数约简问题,提出一种新的增量式监督局部切空间排列算法(Incremental Supervised Local Tangent Space Alignment,ISLTSA)。为充分利用训练样本标签信息,在LTSA算法的基础上加入散度矩阵,构造新的最小目标函数,使得高维样本的低维嵌入坐标同类聚集、异类分离。对于新增样本可能影响部分训练样本局部邻域,更新全局坐标矩阵,获取训练样本低维坐标和新增样本低维坐标,并作为初值进行特征值迭代实现所有样本全局坐标的更新。结合支持向量机分类算法,将ISLTSA算法应用于齿轮箱的故障状态识别,实验分析验证了该方法的监督学习能力,可提高故障状态识别率,并具备增量学习能力,可降低维数约简方法的复杂度。 展开更多
关键词 增量式学习 监督局部空间排列 故障诊断 支持向量机
在线阅读 下载PDF
局部切空间排列算法及其在人脸识别中的应用
6
作者 冯海亮 王丽 李见为 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2009年第3期595-599,共5页
目的探索基于流形学习的人脸识别方法,将流形学习中的局部切空间排列算法(LT-SA)应用于人脸识别.方法利用样本点领域的切空间表示局部的几何性质,将局部切空间排列起来构造流形的全局坐标;用高斯核近似映射关系;在降维空间中用线性判别... 目的探索基于流形学习的人脸识别方法,将流形学习中的局部切空间排列算法(LT-SA)应用于人脸识别.方法利用样本点领域的切空间表示局部的几何性质,将局部切空间排列起来构造流形的全局坐标;用高斯核近似映射关系;在降维空间中用线性判别分析技术(LDA)提取特征;使用最近邻分类器进行分类识别;在Yale和CMU PIE人脸数据库上进行仿真实验.结果实验表明在Yale数据库上LTSA+LDA算法比已有LLE+LDA方法、LLTSA方法平均识别率分别高7.22%、19.11%;在CMU PIE数据库上分别高3.71%、29.56%.结论笔者提出的LTSA+LDA算法能较为有效地将局部切空间排列算法应用于人脸识别,显著提高了识别率. 展开更多
关键词 流形学习 局部空间排列 线性鉴别分析 LTSA+LDA算法
在线阅读 下载PDF
基于离群点检测的鲁棒局部切空间排列方法
7
作者 王靖 《华侨大学学报(自然科学版)》 CAS 北大核心 2008年第4期522-526,共5页
研究局部切空间排列方法(LTSA)对离群点的敏感性,提出一种基于离群点检测的鲁棒局部切空间排列方法(RLTSA).该方法用样本点到切空间的投影距离检测离群点.在构造样本点局部邻域时,RLTSA尽可能排除离群点,以构造稳定的局部邻域,而对离群... 研究局部切空间排列方法(LTSA)对离群点的敏感性,提出一种基于离群点检测的鲁棒局部切空间排列方法(RLTSA).该方法用样本点到切空间的投影距离检测离群点.在构造样本点局部邻域时,RLTSA尽可能排除离群点,以构造稳定的局部邻域,而对离群点,RLTSA把它们投影到更高维的切空间,以减少离群点的投影距离.模拟实验和实际例子说明,新方法能提高局部切空间排列方法处理离群样本点的能力. 展开更多
关键词 鲁棒 离群点 流形学习 局部空间排列
在线阅读 下载PDF
基于局部切空间排列和最小二乘支持向量机的气缸压力识别 被引量:8
8
作者 常春 梅检民 +2 位作者 赵慧敏 沈虹 李晓辉 《振动与冲击》 EI CSCD 北大核心 2020年第13期16-21,63,共7页
为了提高缸盖振动信号恢复气缸压力的识别精度,提出一种基于局部切空间排列(LTSA)和最小二乘支持向量机(LSSVM)的气缸压力识别方法。首先提取缸盖振动信号时域、频域及小波包能量域特征,组成高维特征集,利用LTSA算法提取高维特征集的低... 为了提高缸盖振动信号恢复气缸压力的识别精度,提出一种基于局部切空间排列(LTSA)和最小二乘支持向量机(LSSVM)的气缸压力识别方法。首先提取缸盖振动信号时域、频域及小波包能量域特征,组成高维特征集,利用LTSA算法提取高维特征集的低维本征流形特征,然后把降维后的特征参数集作为LSSVM模型输入,缸压信号作为LSSVM模型输出,通过多个样本对LSSVM模型进行训练,从而获得气缸压力的重构模型。试验结果表明:基于局部切空间排列和最小二乘支持向量机的气缸压力识别方法具有精度高、泛化能力强等优点。 展开更多
关键词 柴油机 振动信号 气缸压力识别 局部空间排列 最小二乘支持向量机
在线阅读 下载PDF
采用监督局部切空间排列算法的航空发动机磨损故障诊断 被引量:4
9
作者 张赟 林学森 +2 位作者 王琳 陈应付 李朋 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第4期179-185,共7页
为解决传统特征提取技术难以处理具有非线性结构的复杂故障数据、影响故障诊断准确性的问题,将非线性维数约简技术——局部切空间排列引入航空发动机滑油光谱数据特征提取中,提出了一种基于监督局部切空间排列的发动机磨损故障诊断方法... 为解决传统特征提取技术难以处理具有非线性结构的复杂故障数据、影响故障诊断准确性的问题,将非线性维数约简技术——局部切空间排列引入航空发动机滑油光谱数据特征提取中,提出了一种基于监督局部切空间排列的发动机磨损故障诊断方法。该方法对非线性分布故障流形数据的内在几何特征进行捕捉,并将数据向低维故障特征空间进行非线性映射,完成故障特征的提取,最后在故障特征空间里构造分类器,完成磨损故障的识别诊断。采用某型发动机磨损故障滑油光谱数据开展实验,结果表明:与传统主元分析、线性鉴别分析特征提取方法相比,该方法能够更有效地提取出嵌入于故障数据中的非线性特征,提高了故障分类的准确率,并且只需采用简单的线性分类器就能具有很好的故障诊断性能。 展开更多
关键词 局部空间排列 非线性特征提取 航空发动机 磨损故障诊断
在线阅读 下载PDF
基于改进距离的孤立点检测方法 被引量:12
10
作者 韦佳 彭宏 林毅申 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期25-30,共6页
局部切空间排列(LTSA)算法是一种有效的流形学习方法,但该算法对孤立点的存在非常敏感.为了增强LTSA算法对孤立点的鲁棒性,文中提出了一种基于改进距离的孤立点检测方法.该方法通过改进距离来度量样本点之间的距离,降低了样本点分布不... 局部切空间排列(LTSA)算法是一种有效的流形学习方法,但该算法对孤立点的存在非常敏感.为了增强LTSA算法对孤立点的鲁棒性,文中提出了一种基于改进距离的孤立点检测方法.该方法通过改进距离来度量样本点之间的距离,降低了样本点分布不均匀对孤立点检测算法的影响.实验结果表明,该数据预处理方法能有效地提高LTSA算法的鲁棒性,更好地挖掘数据集的本征特性,具有更好的数据可视化效果. 展开更多
关键词 数据预处理 孤立点检测 改进距离 流形学习 局部空间排列
在线阅读 下载PDF
基于相空间重构与非线性流形的滚动轴承复合故障诊断 被引量:5
11
作者 赵洪杰 潘紫微 +1 位作者 童靳于 刘燕 《振动与冲击》 EI CSCD 北大核心 2013年第11期41-45,共5页
针对滚动轴承振动信号的非平稳及非线性特点,提出基于相空间重构与非线性流形的滚动轴承复合故障诊断方法。将滚动轴承一维振动信号重构到高维相空间,计算重构信号协方差矩阵特征值,以此组成轴承故障诊断原始特征集;采用局部切空间排列... 针对滚动轴承振动信号的非平稳及非线性特点,提出基于相空间重构与非线性流形的滚动轴承复合故障诊断方法。将滚动轴承一维振动信号重构到高维相空间,计算重构信号协方差矩阵特征值,以此组成轴承故障诊断原始特征集;采用局部切空间排列算法对原始特征集作特征压缩后,将所得新特征输入到K-means分类器中进行轴承故障识别与聚类。实验结果表明,与经典线性分析方法 PCA相比,该方法聚类效果更好。 展开更多
关键词 滚动轴承 空间重构 流形 复合故障 局部空间排列算法
在线阅读 下载PDF
监督式正交迹比判别投影在图像集人脸识别中的应用 被引量:1
12
作者 张强 蔡云泽 《高技术通讯》 CAS CSCD 北大核心 2014年第7期684-689,共6页
研究、分析了人脸识别中提取原始数据特征的已有方法,在此基础上给出了一种应用监督式正交迹比判别投影(SOTRDP)的新型特征提取方法,即SOTRDP方法。不同于现有的非监督判别投影(UDP)方法,SOTRDP方法能够同时利用局部信息和类别信息建立... 研究、分析了人脸识别中提取原始数据特征的已有方法,在此基础上给出了一种应用监督式正交迹比判别投影(SOTRDP)的新型特征提取方法,即SOTRDP方法。不同于现有的非监督判别投影(UDP)方法,SOTRDP方法能够同时利用局部信息和类别信息建立相似性矩阵。在利用改进局部切空间对齐(ILTSA)非线性降维的基础上,利用聚类中心或最靠近它的样本作为输入,拓展SOTRDP用于图像集人脸识别。在PIE和Honda/UCSD人脸数据库上的实验结果验证了所提方法的有效性。 展开更多
关键词 非监督判别投影(UDP) 监督式正交迹比判别投影(SOTRDP) 改进局部空间对齐(ILTSA) 图像集人脸识别
在线阅读 下载PDF
基于相空间重构和流形拓扑结构的飞参段划分
13
作者 曲晋瑶 徐志凌 +1 位作者 窦海学 唐义号 《沈阳航空航天大学学报》 2021年第5期73-82,共10页
针对现有飞参阶段划分研究方法中模板和标签数据获取代价高、数据内在属性研究不够深入、算法参数过多等问题提出一种基于相空间重构和流形拓扑结构的飞参阶段自适应划分方法。该方法首先使用C-C法将反映阶段特征的一维高度数据重构到... 针对现有飞参阶段划分研究方法中模板和标签数据获取代价高、数据内在属性研究不够深入、算法参数过多等问题提出一种基于相空间重构和流形拓扑结构的飞参阶段自适应划分方法。该方法首先使用C-C法将反映阶段特征的一维高度数据重构到高维相空间;然后根据不同阶段飞行数据在相空间中呈现出不同流形结构的特点,采用局部切空间排列算法得到重构混沌吸引子轨迹拓扑结构;经处理后,不同阶段数据在拓扑结构中沿不同轴向紧密排列,进而完成阶段划分。通过真实飞机多次连续飞行数据对该方法进行验证,结果表明,该方法可以实现不同轨迹下飞参阶段的自适应准确划分。 展开更多
关键词 飞参阶段划分 空间重构 局部空间排列 流形拓扑结构 自适应准确划分
在线阅读 下载PDF
基于变分模态分解与流形学习的滚动轴承故障特征提取方法 被引量:26
14
作者 戚晓利 叶绪丹 +3 位作者 蔡江林 郑近德 潘紫微 张兴权 《振动与冲击》 EI CSCD 北大核心 2018年第23期133-140,共8页
提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;... 提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;然后,提取有效模态分量的时域指标和小波包频带分解能量所构成的频域指标,两者结合初步提取高维故障特征后,再应用LTSA对故障特征进行二次提取;最后输入到K-means分类器进行故障类型识别;通过对圆柱滚子轴承故障诊断的对比实验分析,发现:(1)与时频特征+LTSA、EMD+LTSA特征提取方法相比,VMD+LTSA方法在分类效果和识别精度上更具优势;(2) LTSA算法相比较于PCA、LPP、LE、ISOMAP和LLE这5种算法,其降维后的特征故障敏感性最好。研究结果表明所提出的方法在圆柱滚子轴承故障诊断方面具有一定的优越性。 展开更多
关键词 变分模态分解 流形学习 局部空间排列算法 故障诊断 圆柱滚动轴承
在线阅读 下载PDF
基于敏感特征选择与流形学习维数约简的故障诊断 被引量:42
15
作者 苏祖强 汤宝平 姚金宝 《振动与冲击》 EI CSCD 北大核心 2014年第3期70-75,共6页
针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selectio... 针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selection,IKDM-FS),在核空间中计算样本类间距离和类内散度,优选出使样本类间距大、类内散度小的特征,并根据特征的敏感程度对特征进行加权。通过线性局部切空间排列算法(Linear Local Tangent Space Alignment,LLTSA)对由敏感特征组成的特征子集进行特征融合,提取出对故障分类更加敏感的融合特征,并输入加权k最近邻分类器(Weighted k Nearest Neighbor Classifier,WKNNC)进行故障识别。WKNNC具有比k最近邻分类器(k Nearest Neighbor Classifier,KNNC)更加稳定的识别精度。最后,通过滚动轴承故障模拟实验验证了该方法的有效性。 展开更多
关键词 故障诊断 特征选择 改进的核空间距离测度 线性局部空间排列 加权k最近邻分类器
在线阅读 下载PDF
利用增量式非线性流形学习的状态监测方法 被引量:9
16
作者 张熠卓 徐光华 +2 位作者 梁霖 张锋 李淑智 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第1期64-68,136,共6页
针对传统流形学习方法难以处理大批量设备运行数据的特点,提出了一种采用增量式流形学习方法的机械设备状态监测方法.该方法首先利用局部切空间排列算法对训练样本集进行非线性维数约简,得到初始的低维流形结构,然后通过增量式学习机制... 针对传统流形学习方法难以处理大批量设备运行数据的特点,提出了一种采用增量式流形学习方法的机械设备状态监测方法.该方法首先利用局部切空间排列算法对训练样本集进行非线性维数约简,得到初始的低维流形结构,然后通过增量式学习机制对新增的时序样本点进行动态聚类.通过对压缩机喘振试验数据及滚动轴承故障数据的分析表明,该方法的计算复杂度低,可以有效地识别出隐藏在高维特征集中的非线性故障特征,因此具有良好的工程应用前景. 展开更多
关键词 流形学习 增量式学习 状态监测 局部空间排列
在线阅读 下载PDF
基于非线性流形学习的喘振监测技术研究 被引量:12
17
作者 张熠卓 徐光华 梁霖 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第7期44-48,共5页
为了提取压缩机喘振发作时表现出的非线性特性,引入了一种新的喘振特征提取方法.首先对原始信号进行多元统计分析,构造高维特征空间,然后利用局部切空间排列的流形学习方法提取出一维主流形,进而通过主流形几何结构的变化来反映系统的... 为了提取压缩机喘振发作时表现出的非线性特性,引入了一种新的喘振特征提取方法.首先对原始信号进行多元统计分析,构造高维特征空间,然后利用局部切空间排列的流形学习方法提取出一维主流形,进而通过主流形几何结构的变化来反映系统的非线性变化.分析结果表明,与相关积分方法相比,该方法可以提前1 s识别出喘振特征,并且能够降低误报率,因此在喘振监测中具有良好的应用前景. 展开更多
关键词 喘振 流形学习 局部空间排列
在线阅读 下载PDF
基于流形学习的高光谱图像非线性降维算法 被引量:3
18
作者 杨磊 唐晓燕 《河南理工大学学报(自然科学版)》 CAS 北大核心 2016年第5期660-665,共6页
针对高光谱图像同一像元内存在多种地物种类,且地物之间具有多重反射,导致高光谱数据的非线性,采用传统的线性降维算法效果不佳等问题,提出利用流形学习的方法来寻找嵌入在高维观测数据空间的低维光滑流形,实现高光谱数据的非线性光谱... 针对高光谱图像同一像元内存在多种地物种类,且地物之间具有多重反射,导致高光谱数据的非线性,采用传统的线性降维算法效果不佳等问题,提出利用流形学习的方法来寻找嵌入在高维观测数据空间的低维光滑流形,实现高光谱数据的非线性光谱降维。模拟和真实高光谱遥感数据实验结果表明,与传统的线性降维方法 PCA相比,经过等距映射、局部切空间排列等流行学习算法降维后的高光谱图像具有更好的光谱端元可分性。 展开更多
关键词 高光谱图像 非线性降维 流行学习 等距映射 局部空间排列
在线阅读 下载PDF
KPCA与LTSA融合的转子故障数据集降维算法 被引量:3
19
作者 赵荣珍 陈昱吉 《兰州理工大学学报》 CAS 北大核心 2021年第1期36-40,共5页
针对核主成分分析(kernel principal component analysis,KPCA)和局部切空间排列算法(local tangent space,LTSA)在降维过程中无法兼顾保持数据全局结构特性和局部结构特性的问题,利用核函数的可线性叠加性质,提出一种将KPCA算法与LTSA... 针对核主成分分析(kernel principal component analysis,KPCA)和局部切空间排列算法(local tangent space,LTSA)在降维过程中无法兼顾保持数据全局结构特性和局部结构特性的问题,利用核函数的可线性叠加性质,提出一种将KPCA算法与LTSA算法融合的非线性降维算法.该算法能使故障数据集经过降维后同时保持数据样本间的全局距离关系和局部邻域关系.应用验证表明:本算法可以准确地提取故障数据集中所包含的全局与局部结构特征模式,使故障分类的结果更明晰、更准确、更有效. 展开更多
关键词 核主成分分析 局部空间排列 数据降维 故障分类
在线阅读 下载PDF
基于LCD-LLTSA的电动汽车电机轴承故障特征频率提取 被引量:1
20
作者 史素敏 杨春长 王斐 《计量学报》 CSCD 北大核心 2020年第10期1267-1272,共6页
为有效提取出电动汽车电机轴承故障特征频率,将局部特征尺度分解、线性局部切空间排列和包络分析进行结合,用于电动汽车电机轴承的故障特征频率的提取。首先利用局部特征尺度分解对电动汽车电机轴承故障信号进行分解,得到若干个内禀尺... 为有效提取出电动汽车电机轴承故障特征频率,将局部特征尺度分解、线性局部切空间排列和包络分析进行结合,用于电动汽车电机轴承的故障特征频率的提取。首先利用局部特征尺度分解对电动汽车电机轴承故障信号进行分解,得到若干个内禀尺度分量;然后利用线性局部切空间排列对由内禀尺度分量构成的矩阵进行降维处理,得到低维矩阵并以此进行信号重构;最后对重构信号进行包络谱分析,获得故障特征频率。仿真信号和实验信号的实验结果验证了方法的有效性。 展开更多
关键词 计量学 滚动轴承 故障诊断 特征频率 局部特征尺度分解 线性局部空间排列
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部