期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
贝叶斯分类器的判别式参数学习 被引量:6
1
作者 石洪波 柳亚琴 李爱军 《计算机应用》 CSCD 北大核心 2011年第4期1074-1078,共5页
为了提高贝叶斯分类器的分类性能,针对贝叶斯网络分类器的构成特征,提出一种基于参数集成的贝叶斯分类器判别式参数学习算法PEBNC。该算法将贝叶斯分类器的参数学习视为回归问题,将加法回归模型应用于贝叶斯网络分类器的参数学习,实现... 为了提高贝叶斯分类器的分类性能,针对贝叶斯网络分类器的构成特征,提出一种基于参数集成的贝叶斯分类器判别式参数学习算法PEBNC。该算法将贝叶斯分类器的参数学习视为回归问题,将加法回归模型应用于贝叶斯网络分类器的参数学习,实现贝叶斯分类器的判别式参数学习。实验结果表明,在大多数实验数据上,PEBNC能够明显提高贝叶斯分类器的分类准确率。此外,与一般的贝叶斯集成分类器相比,PEBNC不必存储成员分类器的参数,空间复杂度大大降低。 展开更多
关键词 贝叶斯网络分类器 集成方法 参数学习 判别式学习
在线阅读 下载PDF
多任务学习 被引量:42
2
作者 张钰 刘建伟 左信 《计算机学报》 EI CSCD 北大核心 2020年第7期1340-1378,共39页
随着图像处理,语音识别等人工智能技术的发展,很多学习方法尤其是采用深度学习框架的方法取得了优异的性能,在精度和速度方面有了很大的提升,但随之带来的问题也很明显,这些学习方法如果要获得稳定的学习效果,往往需要使用数量庞大的标... 随着图像处理,语音识别等人工智能技术的发展,很多学习方法尤其是采用深度学习框架的方法取得了优异的性能,在精度和速度方面有了很大的提升,但随之带来的问题也很明显,这些学习方法如果要获得稳定的学习效果,往往需要使用数量庞大的标注数据进行充分训练,否则就会出现欠拟合的情况而导致学习性能的下降.因此,随着任务复杂程度和数据规模的增加,对人工标注数据的数量和质量也提出了更高的要求,造成了标注成本和难度的增大.同时,单一任务的独立学习往往忽略了来自其它任务的经验信息,致使训练冗余重复和学习资源的浪费,也限制了其性能的提升.为了缓解这些问题,属于迁移学习范畴的多任务学习方法逐渐引起了研究者的重视.与单任务学习只使用单个任务的样本信息不同,多任务学习假设不同任务数据分布之间存在一定的相似性,在此基础上通过共同训练和优化建立任务之间的联系.这种训练模式充分促进任务之间的信息交换并达到了相互学习的目的,尤其是在各自任务样本容量有限的条件下,各个任务可以从其它任务获得一定的启发,借助于学习过程中的信息迁移能间接利用其它任务的数据,从而缓解了对大量标注数据的依赖,也达到了提升各自任务学习性能的目的.在此背景之下,本文首先介绍了相关任务的概念,并按照功能的不同对相关任务的类型进行划分,之后对它们的特点进行了逐一描述.然后,本文按照数据的处理模式和任务关系的建模过程不同将当前的主流算法划分为两大类:结构化多任务学习算法和深度多任务学习算法.其中,结构化多任务学习算法采用线性模型,可以直接针对数据进行结构假设并且使用原有标注特征表述任务关系,同时,又可根据学习对象的不同将其细分为基于任务层面和基于特征层面两种不同结构,每种结构有判别式方法和生成式方法两种实现手段.与结构化多任务学习算法的建模过程不同,深度多任务学习算法利用经过多层特征抽象后的深层次信息进行任务关系描述,通过处理特定网络层中的参数达到信息共享的目的.紧接着,以两大类算法作为主线,本文详细分析了不同建模方法中对任务关系的结构假设、实现途径、各自的优缺点以及方法之间的联系.最后,本文总结了任务之间相似性及其紧密程度的判别依据,并且分析了多任务作用机制的有效性和内在成因,从归纳偏置和动态求解等角度阐述了多任务信息迁移的特点. 展开更多
关键词 多任务学习 信息迁移 任务相似性 贝叶斯生成式模型多任务学习 判别式多任务学习 深度多任务学习
在线阅读 下载PDF
判别性双向协同表示的图像识别算法 被引量:1
3
作者 王亚楠 宋晓宁 《计算机应用研究》 CSCD 北大核心 2021年第2期615-618,共4页
基于协同表示的分类(CRC)以其卓越的协同能力成为人脸分类领域的一个突破。然而在实际应用中,通常只提供很少甚至是单个人脸图像来进行人脸识别,这导致了CRC无法很好地处理光照、表情、姿态和遮挡等问题。针对该问题,提出一种判别性双... 基于协同表示的分类(CRC)以其卓越的协同能力成为人脸分类领域的一个突破。然而在实际应用中,通常只提供很少甚至是单个人脸图像来进行人脸识别,这导致了CRC无法很好地处理光照、表情、姿态和遮挡等问题。针对该问题,提出一种判别性双向协同表示的图像识别算法(DB-CRC)。首先通过引入判别式字典学习(FDDL)模型学习得到一个结构化字典,使得每个特定类的子字典对相关类的样本具有良好的表示能力,由此,较大的类间离散度和较小的类内离散度使得重构误差和编码系数都具有判别性;然后将学习得到的稀疏编码系数作为测试样本数据进行双向表达,建立快速逆向表示模型,利用双向表示策略估计每个测试样本与结构化字典之间的双向重构残差信息;最后利用竞争融合方法对来自双向表示模型的重构残差进行加权排名,实现最终的人脸分类。在AR、PIE、LFW等通用人脸数据库上的实验结果验证了该算法的有效性,特别是对小样本问题的鲁棒性。 展开更多
关键词 基于Fisher判别式字典学习 双向协同表示分类 快速逆向重构 人脸识别
在线阅读 下载PDF
基于大间隔方法的汉语组块分析 被引量:7
4
作者 周俊生 戴新宇 +1 位作者 陈家骏 曲维光 《软件学报》 EI CSCD 北大核心 2009年第4期870-877,共8页
汉语组块分析是中文信息处理领域中一项重要的子任务.在一种新的结构化SVMs(support vector machines)模型的基础上,提出一种基于大间隔方法的汉语组块分析方法.首先,针对汉语组块分析问题设计了序列化标注模型;然后根据大间隔思想给出... 汉语组块分析是中文信息处理领域中一项重要的子任务.在一种新的结构化SVMs(support vector machines)模型的基础上,提出一种基于大间隔方法的汉语组块分析方法.首先,针对汉语组块分析问题设计了序列化标注模型;然后根据大间隔思想给出判别式的序列化标注函数的优化目标,并应用割平面算法实现对特征参数的近似优化训练.针对组块识别问题设计了一种改进的F1损失函数,使得F1损失值能够依据每个句子的实际长度进行相应的调整,从而能够引入更有效的约束不等式.通过在滨州中文树库CTB4数据集上的实验数据显示,基于改进的F1损失函数所产生的识别结果优于Hamming损失函数,各种类型组块识别的总的F1值为91.61%,优于CRFs(conditional random fields)和SVMs方法. 展开更多
关键词 汉语组块分析 大间隔 判别式学习 损失函数
在线阅读 下载PDF
基于相关滤波器的视觉目标跟踪综述 被引量:24
5
作者 魏全禄 老松杨 白亮 《计算机科学》 CSCD 北大核心 2016年第11期1-5,18,共6页
视觉跟踪是一个重要的计算机视觉任务,有着广泛的应用,由于现实场景中存在着众多困难,视觉跟踪仍是一个活跃的研究领域。判别式分类器是现代跟踪方法中的一个核心组成部分,其在线学习一个二值分类器以在每一帧中区分目标与背景,充分利... 视觉跟踪是一个重要的计算机视觉任务,有着广泛的应用,由于现实场景中存在着众多困难,视觉跟踪仍是一个活跃的研究领域。判别式分类器是现代跟踪方法中的一个核心组成部分,其在线学习一个二值分类器以在每一帧中区分目标与背景,充分利用机器学习中丰富的学习算法,取得了许多突破。相关滤波器已成功应用到目标检测和识别中,其由于计算效率高,近年来作为一种判别式跟踪方法被应用到视觉跟踪领域,取得了很好的效果。首先简要介绍了判别式跟踪算法;然后对相关滤波器基本理论及几种典型的相关滤波器构造方法进行了描述;最后重点介绍了近年来相关滤波器在视觉跟踪中的应用及研究进展,并总结了可能的研究方向和发展趋势。 展开更多
关键词 视觉跟踪 判别式学习方法 相关滤波器
在线阅读 下载PDF
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
6
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部