针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印...针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法迅速地让网络收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声、低通滤波、重采样和重量化等攻击有更强的鲁棒性,性能平均提高了5%。展开更多
随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time l...随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。展开更多
在水声通信中,信道的多径效应会造成严重的码间串扰(ISI),而现有的均衡算法在处理ISI问题时存在收敛速度慢、稳态误差大、算法复杂不易于硬件移植等问题,为此结合判决反馈均衡器结构前向均衡(FFE)与判决均衡结构(DFE),提出了一种基于反...在水声通信中,信道的多径效应会造成严重的码间串扰(ISI),而现有的均衡算法在处理ISI问题时存在收敛速度慢、稳态误差大、算法复杂不易于硬件移植等问题,为此结合判决反馈均衡器结构前向均衡(FFE)与判决均衡结构(DFE),提出了一种基于反余弦步长函数和三参数调整因子的变步长最小均方(LMS)算法。首先对三参数因子α、β、r进行算法仿真,优化算法性能,与固定步长LMS算法、基于修正反正切的变步长LMS算法以及基于双曲正割函数的变步长LMS算法的收敛性能和稳态误差进行仿真比较,结果显示:所提算法的收敛速度较固定步长LMS算法提高了57.9%,稳态误差下降5 d B;较双曲正割LMS算法和修正反正切LMS算法提高了26.3%和15.8%,并且算法的稳态误差下降了1~2 d B。最后,将算法移植于信号处理模块,进行水下实验,结果表明,水声信道造成的ISI经过均衡器后,信号得以恢复,能够实际克服多径效应造成的水声信道ISI问题。展开更多
文摘针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法迅速地让网络收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声、低通滤波、重采样和重量化等攻击有更强的鲁棒性,性能平均提高了5%。
文摘随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。
文摘在水声通信中,信道的多径效应会造成严重的码间串扰(ISI),而现有的均衡算法在处理ISI问题时存在收敛速度慢、稳态误差大、算法复杂不易于硬件移植等问题,为此结合判决反馈均衡器结构前向均衡(FFE)与判决均衡结构(DFE),提出了一种基于反余弦步长函数和三参数调整因子的变步长最小均方(LMS)算法。首先对三参数因子α、β、r进行算法仿真,优化算法性能,与固定步长LMS算法、基于修正反正切的变步长LMS算法以及基于双曲正割函数的变步长LMS算法的收敛性能和稳态误差进行仿真比较,结果显示:所提算法的收敛速度较固定步长LMS算法提高了57.9%,稳态误差下降5 d B;较双曲正割LMS算法和修正反正切LMS算法提高了26.3%和15.8%,并且算法的稳态误差下降了1~2 d B。最后,将算法移植于信号处理模块,进行水下实验,结果表明,水声信道造成的ISI经过均衡器后,信号得以恢复,能够实际克服多径效应造成的水声信道ISI问题。