期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
(ρ ,σ)-方法关于刚性延迟微分代数系统的非线性稳定性 被引量:5
1
作者 张诚坚 廖晓昕 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第6期827-832,共6页
本文涉及 (ρ ,σ) 方法应用于 1 指标的非线性刚性延迟微分代数系统的稳定性 .证明了求解常微分方程(ODEs)的 (ρ,σ) 方法的 (强 )G(c ,p ,q) 代数稳定性导致相应延迟微分代数系统方法的 (渐近 )
关键词 σ)-方法 刚性延迟微分代数系统 非线性稳定性
在线阅读 下载PDF
非线性刚性微分-代数系统的波形松弛离散法
2
作者 孙卫 李立 邹建华 《高校应用数学学报(A辑)》 CSCD 北大核心 2006年第4期458-464,共7页
研究基于Runge-Kutta方法的波形松弛离散过程,得到新的刚性微分-代数系统的收敛理论,及该类系统解的存在性和惟一性,并用具体算例测试该理论的有效实用性.
关键词 微分-代数系统 刚性 Runge—Nutta方法 波形松弛
在线阅读 下载PDF
多延迟微分代数系统的Runge-kutta方法稳定性分析
3
作者 王洪山 黄枝姣 《武汉科技大学学报》 CAS 2002年第4期426-427,436,共3页
多延迟微分代数系统广泛出现于工程领域。针对一类刚性多延迟代数系统,进行了变步长Runge Kutta方法的稳定性分析,其判据基于非经典Lipschitz条件。
关键词 RUNGE-KUTTA方法 延迟微分代数系统 稳定性 插值 非线性刚性系统 非经典Lipschiez条件
在线阅读 下载PDF
基于混合积分法的电力系统暂态稳定时域仿真 被引量:7
4
作者 苏思敏 《电力系统保护与控制》 EI CSCD 北大核心 2008年第15期56-59,共4页
提出了一种新的将显式和隐式积分法混合使用的中小型电力系统时域仿真方法,该方法利用系统的特征根将系统分为刚性和非刚性两个不变子系统,在刚性空间内采用稳定性较好的隐式梯形积分方法,在非刚性空间内采用速度较快的显式前向欧拉法... 提出了一种新的将显式和隐式积分法混合使用的中小型电力系统时域仿真方法,该方法利用系统的特征根将系统分为刚性和非刚性两个不变子系统,在刚性空间内采用稳定性较好的隐式梯形积分方法,在非刚性空间内采用速度较快的显式前向欧拉法。新英格兰测试系统算例表明了该方法的有效性和实用性。 展开更多
关键词 电力系统 时域仿真 微分-代数方程 刚性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部