Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetri...Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetries in the flow field structure on both sides of the narrow suspension gap,resulting in instability and deterioration of the train’s aerodynamic characteristics,significantly impacting its operational safety.In this study,we firstly validate the aerodynamic characteristics of the superconducting magnetic levitation system by developing a numerical simulation method based on wind tunnel test results.We then investigate the influence of lateral translation parameters on the train’s aerodynamic performance under conditions both with and without crosswinds.We aim to clarify the evolution mechanism of the flow field characteristics under the coupling effect between the train and the U-shaped track and to identify the most unfavorable operational parameters contributing to the deterioration of the train’s aerodynamic properties.The findings show that,without crosswinds,a lateral translation of 30 mm causes a synchronous resonance phenomenon at the side and bottom gaps of the train-track coupling,leading to the worst aerodynamic performance.Under crosswind conditions,a lateral translation of 40 mm maximizes peak pressure fluctuations and average turbulent kinetic energy around the train,resulting in the poorest aerodynamic performance.This research provides theoretical support for enhancing the operational stability of superconducting magnetic levitation trains.展开更多
In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measur...In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section.展开更多
In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck a...In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck and CRH2 high-speed train as research targets.Wind tunnel experiments are performed to investigate shielding effects of trains on aerodynamic characteristics of trucks.The results show that aerodynamic interference between trains and trucks varies with positions of trains(upstream,downstream)and trucks(upwind,downwind)and numbers of trains.To summarize,whether the train is upstream or downstream of tracks has basically no effect on aerodynamic forces,other than moments,of a truck driving on windward sides of bridges(upwind).In contrast,the presence of trains on the bridge deck has a significant impact on aerodynamic characteristics of a truck driving on leeward sides(downwind)at the same time.The best shielding effect on lateral forces of trucks occurs when the train is located downstream of tracks.Finally,the pressure measuring system shows that only lift forces on trains are affected by trucks,while other forces and moments are primarily affected by adjacent trains.展开更多
Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel ...Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel test device,which has two moving tracks,was developed.The rationality of the test result was discussed,the effects of intersection mode,yaw angle and lane spacing on the aerodynamic coefficients of the leeward train were analyzed,and the difference of aerodynamic coefficients between the head vehicle and the tail vehicle was discussed.The results show that the proposed test device has good repeatability.The intersection modes have a certain effect on the aerodynamic force of the leeward train when two trains are passing each other,and the results should be more reasonable during the two trains dynamic passing each other.With the decrease of yaw angle,the sudden change of train aerodynamic coefficients is more obvious.The decrease of lane spacing will increase the sudden change of leeward vehicles.In the process of two trains passing each other,the aerodynamic coefficients of the head vehicle and tail vehicle are significantly different,so the coupling vibration analysis of wind-vehicle-bridge system should be considered separately.展开更多
In this paper, a Euler-Lagrangian particle/fluid film/VOF coupled multiphase flow model is presented. Numerical simulations are conducted, and the rainwater accumulation and flow characteristics over two types of wind...In this paper, a Euler-Lagrangian particle/fluid film/VOF coupled multiphase flow model is presented. Numerical simulations are conducted, and the rainwater accumulation and flow characteristics over two types of windshields are studied based on the presented model. The results show that an uneven water film is formed over the windshield, with rain water accumulation occurring for the concave windshield but not for the convex windshield. At low speeds, the average fluid-film thickness for a concave windshield is larger than that of a convex windshield;however, a minor difference occurs between these two values at high speeds, and a critical velocity is observed for the two types of windshields. When the train velocity is less than the critical velocity, the fluid film at the lower part of the windshield and the train nose flows downward, and beyond the critical velocity, the fluid film over the entire windshield and train nose flows upward.展开更多
基金Projects(52372369,52302447,52388102)supported by the National Natural Science Foundation of ChinaProjects(2022YFB4301201-02,2023YFB4302502-02)supported by the National Key R&D Program of China。
文摘Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetries in the flow field structure on both sides of the narrow suspension gap,resulting in instability and deterioration of the train’s aerodynamic characteristics,significantly impacting its operational safety.In this study,we firstly validate the aerodynamic characteristics of the superconducting magnetic levitation system by developing a numerical simulation method based on wind tunnel test results.We then investigate the influence of lateral translation parameters on the train’s aerodynamic performance under conditions both with and without crosswinds.We aim to clarify the evolution mechanism of the flow field characteristics under the coupling effect between the train and the U-shaped track and to identify the most unfavorable operational parameters contributing to the deterioration of the train’s aerodynamic properties.The findings show that,without crosswinds,a lateral translation of 30 mm causes a synchronous resonance phenomenon at the side and bottom gaps of the train-track coupling,leading to the worst aerodynamic performance.Under crosswind conditions,a lateral translation of 40 mm maximizes peak pressure fluctuations and average turbulent kinetic energy around the train,resulting in the poorest aerodynamic performance.This research provides theoretical support for enhancing the operational stability of superconducting magnetic levitation trains.
基金Projects(51808563,51925808)supported by the National Natural Science Foundation of ChinaProject(KLWRTBMC18-03)supported by the Open Research Fund of the Key Laboratory of Wind Resistance Technology of Bridges of ChinaProject(2017YFB1201204)supported by the National Key R&D Program of China。
文摘In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section.
基金Projects(52078504,51822803,51925808,U1934209)supported by the National Natural Science Foundation of ChinaProject(KF2021-05)supported by the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,China。
文摘In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck and CRH2 high-speed train as research targets.Wind tunnel experiments are performed to investigate shielding effects of trains on aerodynamic characteristics of trucks.The results show that aerodynamic interference between trains and trucks varies with positions of trains(upstream,downstream)and trucks(upwind,downwind)and numbers of trains.To summarize,whether the train is upstream or downstream of tracks has basically no effect on aerodynamic forces,other than moments,of a truck driving on windward sides of bridges(upwind).In contrast,the presence of trains on the bridge deck has a significant impact on aerodynamic characteristics of a truck driving on leeward sides(downwind)at the same time.The best shielding effect on lateral forces of trucks occurs when the train is located downstream of tracks.Finally,the pressure measuring system shows that only lift forces on trains are affected by trucks,while other forces and moments are primarily affected by adjacent trains.
基金Projects(51778544,51978589,51908472) supported by the National Natural Science Foundation of ChinaProject(2682021CG014) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel test device,which has two moving tracks,was developed.The rationality of the test result was discussed,the effects of intersection mode,yaw angle and lane spacing on the aerodynamic coefficients of the leeward train were analyzed,and the difference of aerodynamic coefficients between the head vehicle and the tail vehicle was discussed.The results show that the proposed test device has good repeatability.The intersection modes have a certain effect on the aerodynamic force of the leeward train when two trains are passing each other,and the results should be more reasonable during the two trains dynamic passing each other.With the decrease of yaw angle,the sudden change of train aerodynamic coefficients is more obvious.The decrease of lane spacing will increase the sudden change of leeward vehicles.In the process of two trains passing each other,the aerodynamic coefficients of the head vehicle and tail vehicle are significantly different,so the coupling vibration analysis of wind-vehicle-bridge system should be considered separately.
基金Projects(2016YFB1200602-11,2016YFB1200602-12)supported by the National Key R&D Plan of China
文摘In this paper, a Euler-Lagrangian particle/fluid film/VOF coupled multiphase flow model is presented. Numerical simulations are conducted, and the rainwater accumulation and flow characteristics over two types of windshields are studied based on the presented model. The results show that an uneven water film is formed over the windshield, with rain water accumulation occurring for the concave windshield but not for the convex windshield. At low speeds, the average fluid-film thickness for a concave windshield is larger than that of a convex windshield;however, a minor difference occurs between these two values at high speeds, and a critical velocity is observed for the two types of windshields. When the train velocity is less than the critical velocity, the fluid film at the lower part of the windshield and the train nose flows downward, and beyond the critical velocity, the fluid film over the entire windshield and train nose flows upward.