期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于列文伯格-马夸尔特-反向传播人工神经网络的X射线荧光光谱定量分析方法 被引量:3
1
作者 李芳 陆安祥 王纪华 《食品安全质量检测学报》 CAS 2016年第3期1152-1158,共7页
目的建立一种基于列文伯格-马夸尔特-反向传播人工神经网络(Levenberg-Marquardt back-propagation artificial neural networks,LM-BP-ANN)的X射线荧光光谱(XRF)的定量检测分析方法。方法采集84个土壤样品光谱数据,预处理后应用主成分... 目的建立一种基于列文伯格-马夸尔特-反向传播人工神经网络(Levenberg-Marquardt back-propagation artificial neural networks,LM-BP-ANN)的X射线荧光光谱(XRF)的定量检测分析方法。方法采集84个土壤样品光谱数据,预处理后应用主成分分析(PCA)提取特征参数,随机选取训练集、校正集、预测集样品个数分别为42、21、21。以均方差(MSE)、校正决定系数(R^2)、校正标准差(SEC)、验证决定系数(r^2)、预测标准差(SEP)和相对预测误差(RPD)为评价指标,同时分析比较LM-BP-ANN、BP-ANN、PLS三种算法的建模结果,并利用模型预测土壤重金属含量。结果实验确定隐含层神经元数目、学习率和迭代次数值依次为:6、0.1和8,3种建模方法中LM-BP-ANN效果最优,模型的相关系数高于0.98,表明模型有效。结论模型分析快速,可用于实际土壤样品中重金属含量的检测,对于改进X射线荧光光谱仪的检测准确度有着重要的意义。 展开更多
关键词 伯格-马夸尔算法 反向传播神经网络 X射线荧光光谱
在线阅读 下载PDF
GFDM系统中基于实部反馈和Levenberg-Marquard算法的自适应预失真方案 被引量:1
2
作者 苗硕 牛安东 +1 位作者 刘佳宁 李英善 《电讯技术》 北大核心 2022年第11期1638-1643,共6页
为解决广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统中由于高功率放大器(High Power Amplifier,HPA)引起的非线性失真,在考虑放大器测量噪声的情况下,提出了一种基于实部反馈和列文伯格-马奎尔特算法(Real Valu... 为解决广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统中由于高功率放大器(High Power Amplifier,HPA)引起的非线性失真,在考虑放大器测量噪声的情况下,提出了一种基于实部反馈和列文伯格-马奎尔特算法(Real Valued Feedback Levenberg-Marquard Predistortion,R-LM-PD)的自适应预失真方案。该方案采用记忆多项式模型(Memory Polynomial,MP)模拟HPA的逆函数,只利用输出反馈信号和期望信号的实部分量计算预失真器系数。同时,该方案选择收敛速度快、精确度高的LM算法进行参数辨识。仿真结果表明,该方案相比传统直接学习结构可以减少一个反馈支路,在信噪比为16 dB时,误比特率可达到5.1×10^(-6),归一化均方误差相较无预失真时降低了约17 dB。与现有的一些补偿方案相比,该方案具有更好的线性化和抗噪声性能。 展开更多
关键词 广义频分复用 数字预失真 实部反馈 列文伯格-马奎尔特算法 测量噪声
在线阅读 下载PDF
基于向导点法反演水文地质参数 被引量:1
3
作者 何金沙 李春光 +2 位作者 吕岁菊 杨佩瑶 黄传霁 《节水灌溉》 北大核心 2021年第10期13-17,共5页
为了研究观测井与向导点布置范围以及水文地质参数初值对反演结果的影响,利用二维承压含水层理想模型,分别建立观测井、向导点不同分布范围(占研究区面积16%、36%、64%、81%和100%)以及不同渗透系数场初值的地下水反演模型,讨论其反演... 为了研究观测井与向导点布置范围以及水文地质参数初值对反演结果的影响,利用二维承压含水层理想模型,分别建立观测井、向导点不同分布范围(占研究区面积16%、36%、64%、81%和100%)以及不同渗透系数场初值的地下水反演模型,讨论其反演规律。其中,初始渗透系数场与实际渗透系数场之间的均方根误差记作R1,表示先验信息精度;初始渗透系数场经过PEST程序反演后的结果称为渗透系数估计场,与实际渗透系数场之间的均方根误差记作R2,表示参数估计精度,R2值越小反演精度越高。结果表明:随观测井、向导点分布范围增加,相应模型的R2值先减小后逐渐保持稳定;同时随向导点分布范围的增加,调用Modflow程序与优化迭代的次数减少;R1值增加,不同渗透系数初值模型的R2值、Modflow程序调用次数与优化迭代也会增加。由此看出,观测井与向导点分布范围越大,初始渗透系数场越接近真实值,反演结果越理想。研究成果为观测井与向导点的科学布置以及初始渗透系数场的取值提供了理论依据,有助于向导点法的推广。 展开更多
关键词 向导点法 向导点分布范围 观测井分布范围 地质参数反演 高斯-马夸尔-伯格迭代算法 PEST
在线阅读 下载PDF
基于LM方法的麻花钻刃带宽度测量研究 被引量:1
4
作者 周正 台立钢 +1 位作者 陈志远 张禹 《计量学报》 CSCD 北大核心 2024年第4期480-488,共9页
提出一种基于二值化的麻花钻刃带宽度检测方法。首先对目标边缘进行锐化,然后用巴特沃斯高通滤波提取边缘信息;其次通过改进的大津二值化算法对疑似边缘点进行阈值分割,获取边缘点坐标;再次使用列文伯格-马夸尔特(LM)方法对边缘附近的... 提出一种基于二值化的麻花钻刃带宽度检测方法。首先对目标边缘进行锐化,然后用巴特沃斯高通滤波提取边缘信息;其次通过改进的大津二值化算法对疑似边缘点进行阈值分割,获取边缘点坐标;再次使用列文伯格-马夸尔特(LM)方法对边缘附近的点进行拟合,得到刃带宽度曲线并求其拐点,求取麻花钻刃带宽度的数据。最后进行对比实验,用LM方法对未处理的M35直径2.5 cm的刃带图像进行处理得到刃带宽度1.467 mm,测量误差0.467 mm。改进后的测量结果为0.853 mm,测量误差为0.147 mm。 展开更多
关键词 几何量计量 麻花钻刃带宽度 伯格-马夸尔方法 二值化算法 视觉测量
在线阅读 下载PDF
燃料油中有机硫化物在不同色谱柱上的定量结构保留关系(QSRR)的研究 被引量:4
5
作者 张晓彤 石丽华 +2 位作者 宋丽娟 孙兆林 孙挺 《石油炼制与化工》 CAS CSCD 北大核心 2017年第8期94-99,共6页
硫组分的含量是表征燃料油品质的重要指标。采用遗传算法-多元线性回归法(GA-MLR)、BP神经网络法、列文伯格-马夸尔特人工神经网络算法(L-M ANN)对52种有机硫化物在4种不同极性固定相上的气相色谱保留指数分别进行了定量结构-气相色谱... 硫组分的含量是表征燃料油品质的重要指标。采用遗传算法-多元线性回归法(GA-MLR)、BP神经网络法、列文伯格-马夸尔特人工神经网络算法(L-M ANN)对52种有机硫化物在4种不同极性固定相上的气相色谱保留指数分别进行了定量结构-气相色谱保留关系研究。采用GA-MLR方法选取模型的输入参数,并将筛选得到的描述符:一阶分子连接性指数(~1χ)、二阶分子连接性指数(~2χ)、电子能(EE)、Y轴偶极(D_y)用于BP神经网络、L-M ANN人工神经网络定量结构保留(QSRR)模型的构建。结果表明:3种方法所建立的定量模型均具有较强的稳定性和良好的预测能力,其相关系数均在0.98以上,但L-M ANN模型的预测结果稍好于其它2种方法;L-M ANN算法首次被应用于燃料油中有机硫化物定量结构-气相色谱保留关系的研究中,效果十分理想,表明L-M ANN算法可以作为一种替代性的建模方法用于物质的定量结构保留关系的研究中。 展开更多
关键词 燃料油 有机硫化物 色谱保留行为 遗传算法-多元线性回归法 BP神经网络 伯格-马夸尔人工神经网络算法 气相色谱硫化学发光检测法
在线阅读 下载PDF
基于相似日LM神经网络的高校图书馆能耗预测 被引量:4
6
作者 王茜 于军琪 《西安建筑科技大学学报(自然科学版)》 北大核心 2022年第3期459-465,共7页
图书馆在高校建筑中具有非常重要的地位,有较大的节能潜力.然而,近年来对于高校图书馆建筑节能的研究偏少,本文通过提出一种基于相似日LM(Levenberg-Marquardt)神经网络的高校图书馆能耗预测模型,为高校图书馆能耗研究提供参考.以我国... 图书馆在高校建筑中具有非常重要的地位,有较大的节能潜力.然而,近年来对于高校图书馆建筑节能的研究偏少,本文通过提出一种基于相似日LM(Levenberg-Marquardt)神经网络的高校图书馆能耗预测模型,为高校图书馆能耗研究提供参考.以我国某高校图书馆为例,首先通过统计分析的方法得到影响图书馆能耗较为重要的因素,即室内人员、开放策略及气温.然后利用模糊聚类法划分相似日,依据相似日将原有数据进行筛选.接着将处理后的数据对预测模型进行训练.最后将改进后的预测模型与原预测模型的各项指标进行对比分析.依据对比结果可知,改进后模型的平均绝对百分比误差和均方误差分别降低了1.28%和23.06,拟合度提高了0.0421. 展开更多
关键词 能耗预测 高校图书馆 相似日 伯格-马夸尔算法
在线阅读 下载PDF
基于改进型RBF神经网络的建筑用电能耗预测 被引量:5
7
作者 李琳 杨新华 +1 位作者 曹磊 韩永军 《建筑节能(中英文)》 CAS 2021年第1期81-86,139,共7页
径向基函数(Radial Basis Function,RBF)神经网络由于其网络结构简单、网络适应性好、学习过程收敛速度快等优点被运用于电力负荷预测领域。在将其应用于建筑用电能耗预测的过程中,由于对目前已有的建筑能耗数据和影响能耗的关键因素分... 径向基函数(Radial Basis Function,RBF)神经网络由于其网络结构简单、网络适应性好、学习过程收敛速度快等优点被运用于电力负荷预测领域。在将其应用于建筑用电能耗预测的过程中,由于对目前已有的建筑能耗数据和影响能耗的关键因素分析不足,以及网络参数不易确定,将导致预测精度无法满足实际需求。采用粒子群算法(Particle Swarm Optimization,PSO)及列文伯格-马夸尔特算法(Levenberg-Marquard,LM)优化模型参数,并以大型办公建筑为研究对象确定影响能耗的约束条件,将其作为网络输入参数进行学习,以提高预测模型的准确性。实验结果表明,改进后的RBF算法平均绝对误差和最大相对误差分别降低了2.2%和4.76%,误差保持在2%以内,具有更高的预测精度。 展开更多
关键词 能耗预测 RBF神经网络 粒子群算法 伯格-马夸尔算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部