Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribut...Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribution of displacement and velocity across shear band as well as the snap-back (elastic rebound) instability. The effective stress law was used to represent the weakening of rock containing pore fluid under pressure. Numerical results show that rock specimen becomes soft (lower strength and hardening modulus) as pore pressure increases, leading to higher displacement skip across shear band. Higher pore pressure results in larger area of plastic zone, higher concentration of shear strain, more apparent precursor to snap-back (unstable failure) and slower snap-back. For higher pore pressure, the formation of shear band-elastic body system and the snap-back are earlier; the distance of snap-back decreases; the capacity of snap-back decreases, leading to lower elastic strain energy liberated beyond the instability and lower earthquake or rockburst magnitude. In the process of snap-back, the velocity skip across shear band is lower for rock specimen at higher pore pressure, showing the slower velocity of snap-back.展开更多
Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the...Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.展开更多
基金Project(50309004) supported by the National Natural Science Foundation of China
文摘Fast Lagrangian analysis of continua(FLAC) was used to study the influence of pore pressure on the mechanical behavior of rock specimen in plane strain direct shear, the distribution of yielded elements, the distribution of displacement and velocity across shear band as well as the snap-back (elastic rebound) instability. The effective stress law was used to represent the weakening of rock containing pore fluid under pressure. Numerical results show that rock specimen becomes soft (lower strength and hardening modulus) as pore pressure increases, leading to higher displacement skip across shear band. Higher pore pressure results in larger area of plastic zone, higher concentration of shear strain, more apparent precursor to snap-back (unstable failure) and slower snap-back. For higher pore pressure, the formation of shear band-elastic body system and the snap-back are earlier; the distance of snap-back decreases; the capacity of snap-back decreases, leading to lower elastic strain energy liberated beyond the instability and lower earthquake or rockburst magnitude. In the process of snap-back, the velocity skip across shear band is lower for rock specimen at higher pore pressure, showing the slower velocity of snap-back.
基金Project(51274251)supported by the National Natural Science Foundation of China
文摘Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.