期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于优化变分模态分解和核极限学习机的集装箱吞吐量预测
被引量:
1
1
作者
张丰婷
杨菊花
+1 位作者
任金荟
金坤
《计算机应用》
CSCD
北大核心
2022年第8期2333-2342,共10页
针对港口集装箱吞吐量数据的复杂性特征,提出基于优化变分模态分解(OVMD)和核极限学习机(KELM)的集装箱吞吐量短期混合预测模型。首先,用汉佩尔辨识法(HI)剔除原始时间序列中的异常值,并把预处理之后的序列通过OVMD分解为多个特征明显...
针对港口集装箱吞吐量数据的复杂性特征,提出基于优化变分模态分解(OVMD)和核极限学习机(KELM)的集装箱吞吐量短期混合预测模型。首先,用汉佩尔辨识法(HI)剔除原始时间序列中的异常值,并把预处理之后的序列通过OVMD分解为多个特征明显的子模态。然后,为提高预测效率,将分解后的子模态按照样本熵(SE)值的大小分成高频低幅、中频中幅和低频高幅三类;同时,借助KELM中携带的小波、高斯和线性核函数捕捉具有不同特征子模态的趋势。最后,把所有子模态的预测结果线性相加得到最终的预测结果。以深圳港的月度集装箱吞吐量数据为样本进行实验,所提模型的平均绝对误差(MAE)达到0.9149,平均绝对百分比误差(MAPE)达到0.199%,均方根误差(RMSE)达到7.8860,决定系数(R2)为0.9944。与四种对比模型相比,所提出的模型在预测精度和效率上都具有一定的优势,同时克服了传统互补集成经验模态分解(CEEMD)和集成经验模态分解(EEMD)中容易出现的模态混叠问题以及极限学习机(ELM)中存在过拟合等问题,具有一定的实际应用潜力。
展开更多
关键词
集装箱吞吐量
预测
样本熵
变分模态
分解
核极限学习机
分解集成预测模型
在线阅读
下载PDF
职称材料
题名
基于优化变分模态分解和核极限学习机的集装箱吞吐量预测
被引量:
1
1
作者
张丰婷
杨菊花
任金荟
金坤
机构
兰州交通大学交通运输学院
中国铁路兰州局集团有限公司兰州货运中心安全生产部
出处
《计算机应用》
CSCD
北大核心
2022年第8期2333-2342,共10页
基金
甘肃省自然科学基金资助项目(21JR7RA287)
甘肃省教育厅“双一流”科研重点项目(GSSYLXM-04)。
文摘
针对港口集装箱吞吐量数据的复杂性特征,提出基于优化变分模态分解(OVMD)和核极限学习机(KELM)的集装箱吞吐量短期混合预测模型。首先,用汉佩尔辨识法(HI)剔除原始时间序列中的异常值,并把预处理之后的序列通过OVMD分解为多个特征明显的子模态。然后,为提高预测效率,将分解后的子模态按照样本熵(SE)值的大小分成高频低幅、中频中幅和低频高幅三类;同时,借助KELM中携带的小波、高斯和线性核函数捕捉具有不同特征子模态的趋势。最后,把所有子模态的预测结果线性相加得到最终的预测结果。以深圳港的月度集装箱吞吐量数据为样本进行实验,所提模型的平均绝对误差(MAE)达到0.9149,平均绝对百分比误差(MAPE)达到0.199%,均方根误差(RMSE)达到7.8860,决定系数(R2)为0.9944。与四种对比模型相比,所提出的模型在预测精度和效率上都具有一定的优势,同时克服了传统互补集成经验模态分解(CEEMD)和集成经验模态分解(EEMD)中容易出现的模态混叠问题以及极限学习机(ELM)中存在过拟合等问题,具有一定的实际应用潜力。
关键词
集装箱吞吐量
预测
样本熵
变分模态
分解
核极限学习机
分解集成预测模型
Keywords
container throughput prediction
Sample Entropy(SE)
Variational Mode Decomposition(VMD)
Kernel Extreme Learning Machine(KELM)
decomposition-ensemble prediction model
分类号
U691.71 [交通运输工程—港口、海岸及近海工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于优化变分模态分解和核极限学习机的集装箱吞吐量预测
张丰婷
杨菊花
任金荟
金坤
《计算机应用》
CSCD
北大核心
2022
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部