期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于VMD-RNN-NM的农产品期货价格分解集成预测研究
1
作者 袁宏俊 黄胜龙 胡凌云 《安徽大学学报(自然科学版)》 北大核心 2025年第5期1-10,共10页
为了捕捉高频数据中的复杂波动特征并提高期货价格的预测精度,采用了一种分解集成的策略,构建了基于变分模态分解(variational mode decomposition,简称VMD)、循环神经网络(recurrent neural network,简称RNN)和下山单纯形法(nelder-me... 为了捕捉高频数据中的复杂波动特征并提高期货价格的预测精度,采用了一种分解集成的策略,构建了基于变分模态分解(variational mode decomposition,简称VMD)、循环神经网络(recurrent neural network,简称RNN)和下山单纯形法(nelder-mead,简称NM)的分解集成预测模型.首先,利用VMD将原始信号序列分解成多个固有模态函数(intrinsic mode function,简称IMF);接着,使用RNN并结合网格搜索方法对各IMF值进行预测;最后,采用NM寻找IMFs预测值的最优系数,进行加权集成后得到最终预测结果.为了验证模型的有效性,选取农产品期货的5 min交易价格作为研究对象,实证结果表明,所提出的分解集成预测模型在预测精度方面显著优于单一预测模型,说明通过分解期货交易价格数据,分解集成模型在一定程度上能够有效捕捉多尺度特征,从而提升预测效果.同时,在对各IMF值进行汇总时,相较于传统的直接加总方法,论文为每个IMF分配不同的系数进行加权组合,更能提高模型的精度. 展开更多
关键词 变分模态分解 循环神经网络 下山单纯形法 高频数据 分解集成预测
在线阅读 下载PDF
基于优化变分模态分解和核极限学习机的集装箱吞吐量预测 被引量:1
2
作者 张丰婷 杨菊花 +1 位作者 任金荟 金坤 《计算机应用》 CSCD 北大核心 2022年第8期2333-2342,共10页
针对港口集装箱吞吐量数据的复杂性特征,提出基于优化变分模态分解(OVMD)和核极限学习机(KELM)的集装箱吞吐量短期混合预测模型。首先,用汉佩尔辨识法(HI)剔除原始时间序列中的异常值,并把预处理之后的序列通过OVMD分解为多个特征明显... 针对港口集装箱吞吐量数据的复杂性特征,提出基于优化变分模态分解(OVMD)和核极限学习机(KELM)的集装箱吞吐量短期混合预测模型。首先,用汉佩尔辨识法(HI)剔除原始时间序列中的异常值,并把预处理之后的序列通过OVMD分解为多个特征明显的子模态。然后,为提高预测效率,将分解后的子模态按照样本熵(SE)值的大小分成高频低幅、中频中幅和低频高幅三类;同时,借助KELM中携带的小波、高斯和线性核函数捕捉具有不同特征子模态的趋势。最后,把所有子模态的预测结果线性相加得到最终的预测结果。以深圳港的月度集装箱吞吐量数据为样本进行实验,所提模型的平均绝对误差(MAE)达到0.9149,平均绝对百分比误差(MAPE)达到0.199%,均方根误差(RMSE)达到7.8860,决定系数(R2)为0.9944。与四种对比模型相比,所提出的模型在预测精度和效率上都具有一定的优势,同时克服了传统互补集成经验模态分解(CEEMD)和集成经验模态分解(EEMD)中容易出现的模态混叠问题以及极限学习机(ELM)中存在过拟合等问题,具有一定的实际应用潜力。 展开更多
关键词 集装箱吞吐量预测 样本熵 变分模态分解 核极限学习机 分解集成预测模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部