期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于领域信息分解式学习的大语言模型修辞认知增强方法
1
作者
王雯
于东
刘鹏远
《中文信息学报》
北大核心
2025年第4期30-41,共12页
中文修辞手法多样且概念差异性大,大语言模型对部分修辞手法的认知存在缺陷。针对该问题,该文提出了QAKAG框架,此框架首先引入信息分解式学习思想,通过问答形式检测大语言模型的修辞认知缺陷,然后以四种不同的知识组合方式探究最优信息...
中文修辞手法多样且概念差异性大,大语言模型对部分修辞手法的认知存在缺陷。针对该问题,该文提出了QAKAG框架,此框架首先引入信息分解式学习思想,通过问答形式检测大语言模型的修辞认知缺陷,然后以四种不同的知识组合方式探究最优信息补充机制,实现了大语言模型修辞认知能力的增强。该文构建了多类别中文修辞句数据集MCRSD和修辞知识库MCRKB,并在ChatGPT4等六个大语言模型上开展实验研究,验证了QAKAG框架对增强大语言模型修辞认知能力的有效性以及其各阶段的必要性。结果表明,在QAKAG框架的增强下,六个大语言模型在多类别修辞识别任务上的性能相较直接回答识别问题的平均F_(1)值提高22.1%,优于Zero-shot-CoT、RAG-BaiKe、Few-Shot5提示策略。
展开更多
关键词
大语言模型
修辞认知
分解式学习
动态信息补充
在线阅读
下载PDF
职称材料
题名
基于领域信息分解式学习的大语言模型修辞认知增强方法
1
作者
王雯
于东
刘鹏远
机构
北京语言大学信息科学学院
国家语言资源监测与研究中心
出处
《中文信息学报》
北大核心
2025年第4期30-41,共12页
基金
教育部人文社科规划项目(23YJAZH184)
北京语言大学梧桐创新平台(中央高校基本科研业务费)(21PT04)
北京语言大学研究生创新基金(中央高校基本科研业务费专项资金)项目成果(24YCX114)。
文摘
中文修辞手法多样且概念差异性大,大语言模型对部分修辞手法的认知存在缺陷。针对该问题,该文提出了QAKAG框架,此框架首先引入信息分解式学习思想,通过问答形式检测大语言模型的修辞认知缺陷,然后以四种不同的知识组合方式探究最优信息补充机制,实现了大语言模型修辞认知能力的增强。该文构建了多类别中文修辞句数据集MCRSD和修辞知识库MCRKB,并在ChatGPT4等六个大语言模型上开展实验研究,验证了QAKAG框架对增强大语言模型修辞认知能力的有效性以及其各阶段的必要性。结果表明,在QAKAG框架的增强下,六个大语言模型在多类别修辞识别任务上的性能相较直接回答识别问题的平均F_(1)值提高22.1%,优于Zero-shot-CoT、RAG-BaiKe、Few-Shot5提示策略。
关键词
大语言模型
修辞认知
分解式学习
动态信息补充
Keywords
large language models
rhetorical cognition
decompositional learning
dynamic information supplement
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于领域信息分解式学习的大语言模型修辞认知增强方法
王雯
于东
刘鹏远
《中文信息学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部