After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of...After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of triaxial extension tests were conducted on sandstone under confining pressures of 10,30,50 and 70 MPa.Elastic energy and dissipated energy were separated by single unloading,the input energy u_(t),elastic energy u_(e),and dissipated energy u_(d)at different unloading stress levels were calculated by the integrating stress−strain curves.The results show that tensile cracks dominate fracture under lower confining pressure(10 MPa),and shear cracks play an increasingly important role in fracture as confining pressure increases(30,50 and 70 MPa).Based on the phenomenon that u_(e)and u_(d)increase linearly with increasing u_(t),a possible energy distribution mechanism of fracture mode transition under triaxial extension was proposed.In addition,it was found that peak energy storage capacity is more sensitive to confining pressure compared to elastic energy conversion capacity.展开更多
基金Project(52074352)supported by the National Natural Science Foundation of ChinaProject(2023JJ30680)supported by the National Science and Technology Major Project of China。
文摘After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of triaxial extension tests were conducted on sandstone under confining pressures of 10,30,50 and 70 MPa.Elastic energy and dissipated energy were separated by single unloading,the input energy u_(t),elastic energy u_(e),and dissipated energy u_(d)at different unloading stress levels were calculated by the integrating stress−strain curves.The results show that tensile cracks dominate fracture under lower confining pressure(10 MPa),and shear cracks play an increasingly important role in fracture as confining pressure increases(30,50 and 70 MPa).Based on the phenomenon that u_(e)and u_(d)increase linearly with increasing u_(t),a possible energy distribution mechanism of fracture mode transition under triaxial extension was proposed.In addition,it was found that peak energy storage capacity is more sensitive to confining pressure compared to elastic energy conversion capacity.