期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于空间交叉卷积的轻量级人体姿态估计算法 被引量:2
1
作者 方益 石守东 +2 位作者 方靖森 叶永芳 蓝艇 《传感技术学报》 CAS CSCD 北大核心 2024年第3期439-445,共7页
针对改进轻量级OpenPose网络在预测阶段仍有较大参数量会降低模型推理速度,不利于在边缘设备部署的问题,提出一种基于改进卷积方法的人体姿态估计网络,使用空间交叉卷积来代替部分标准卷积,减少网络预测阶段的参数量。网络的输入为单目... 针对改进轻量级OpenPose网络在预测阶段仍有较大参数量会降低模型推理速度,不利于在边缘设备部署的问题,提出一种基于改进卷积方法的人体姿态估计网络,使用空间交叉卷积来代替部分标准卷积,减少网络预测阶段的参数量。网络的输入为单目摄像头捕获的RGB图像,以MobileNetV3-Large为主干网络,并在其中加入了CBAM注意力模块,提取不同重要程度的空间和通道特征。获取图像特征后,送入两个分支中分别预测关键点位置和关键点组合关系。以空间交叉卷积代替两个分支中的部分标准卷积核,相对标准卷积能够减少80%的参数量。实验结果表明,相较于原方法,所提方法在精度下降较小的情况下,总参数量降低了22%,部署在CPU端的测试结果显示,速度能够达到6 FPS,提升了4倍。 展开更多
关键词 人体姿态估计 轻量级网络 空间交叉卷积 OpenPose 边缘设备
在线阅读 下载PDF
基于分组卷积和特征图级联的轻量级目标检测 被引量:3
2
作者 杨贤志 黄国方 周宁宁 《计算机应用研究》 CSCD 北大核心 2021年第5期1590-1594,共5页
针对Pelee轻量级目标检测网络中参数量和计算量较多、检测精度较差等缺陷,提出了基于分组卷积和特征图级联的轻量级目标检测网络GCPelee。首先,利用分组卷积替换检测模块中的标准卷积形式以减少模型参数量和计算量;其次,在检测模块上应... 针对Pelee轻量级目标检测网络中参数量和计算量较多、检测精度较差等缺陷,提出了基于分组卷积和特征图级联的轻量级目标检测网络GCPelee。首先,利用分组卷积替换检测模块中的标准卷积形式以减少模型参数量和计算量;其次,在检测模块上应用特征图级联,将感受野较大的特征图包含的信息传递至感受野较小的特征图,提升后者的感受野大小。实验结果表明,优化后的GCPelee模型参数量和计算量均得到减少,检测精度得到了提升。 展开更多
关键词 目标检测 轻量级 分组卷积 特征图级联 GCPelee
在线阅读 下载PDF
基于分组异构卷积的轻量级目标检测网络 被引量:5
3
作者 晏晓天 黄山 《计算机科学》 CSCD 北大核心 2020年第4期108-111,共4页
目前的目标检测模型存在参数量多、模型体积大及检测速度慢的缺点,不能在实时场景下应用。例如,对于自动驾驶技术,不仅需要精准的检测来保障安全,还需要实现快速检测以保证车辆的实时决策。针对以上问题,提出了一种端对端的轻量级目标... 目前的目标检测模型存在参数量多、模型体积大及检测速度慢的缺点,不能在实时场景下应用。例如,对于自动驾驶技术,不仅需要精准的检测来保障安全,还需要实现快速检测以保证车辆的实时决策。针对以上问题,提出了一种端对端的轻量级目标检测网络FGHDet。首先,针对异构卷积HetConv逐通道卷积效率低的问题,对特征图进行分组,提出了分组异构卷积GHConv(Grouping Heterogeneous Convolution);其次,将GHConv和Fire Module组合,构建了基础模块FGH Module;最后,以FGH Mdolue为基础,搭建了端对端的轻量级目标检测网络FGHDet。FGHDet主要通过两种方法来减少参数量:1)使用1×1的卷积对特征图进行降维,减少3×3滤波器的输入通道数量;2)使用GHConv替换传统的卷积核。以KITTI数据集为实验数据,在深度学习框架Keras上完成了模型的训练和评估。实验结果表明,FGHDet在KITTI数据集上的mAP可以达到74.4%,高于Faster R-CNN的70.8%;模型检测速度为28.7 FPS,优于对比模型中最快的SqueezeDet;而且该模型的大小仅为2.6 MB,是Faster R-CNN模型体积的1/200。 展开更多
关键词 目标检测 轻量级 分组异构卷积 FGHDet KITTI
在线阅读 下载PDF
基于分组卷积的轻量级图像超分辨率重建 被引量:4
4
作者 李雪浩 肖秦琨 杨梦薇 《激光杂志》 CAS 北大核心 2023年第3期126-132,共7页
目前,多数基于卷积神经网络的图像超分辨率算法主要面临着网络结构复杂、参量过大以及推理速率缓慢的问题。因此,提出了利用分组卷积实现轻量化的图像超分辨率重建算法。设计了分组卷积块提取图像的基础特征,使网络参量和推理时间有效... 目前,多数基于卷积神经网络的图像超分辨率算法主要面临着网络结构复杂、参量过大以及推理速率缓慢的问题。因此,提出了利用分组卷积实现轻量化的图像超分辨率重建算法。设计了分组卷积块提取图像的基础特征,使网络参量和推理时间有效地减少,同时引入了一种改进轻量型通道注意力机制,在保证通道依赖性的同时,准确定位到目标的位置,提升重建的性能。利用亚像素卷积的过渡采样可以对特征起到集成作用,可以有效地提高重建精度减少噪声和伪影。实验结果表明,该网络在重建性能具有竞争力的前提下,参数量相比于轻量级多尺度超分辨率与超尺度网络低30%以上,并且重建速度也得到提升。 展开更多
关键词 注意力机制 过尺度上采样 轻量级 分组卷积
在线阅读 下载PDF
SKASNet:用于语义分割的轻量级卷积神经网络 被引量:5
5
作者 谭镭 孙怀江 《计算机工程》 CAS CSCD 北大核心 2020年第9期261-267,共7页
多数语义分割模型中的每个卷积层仅采用单一大小的感受野,不利于模型提取多尺度特征。为此,使用选择核卷积构建一个新的残差模块SKAS,通过调节感受野的大小获得多尺度信息。同时,提出一种逐层分组卷积并构建轻量级网络结构SKASNet,在连... 多数语义分割模型中的每个卷积层仅采用单一大小的感受野,不利于模型提取多尺度特征。为此,使用选择核卷积构建一个新的残差模块SKAS,通过调节感受野的大小获得多尺度信息。同时,提出一种逐层分组卷积并构建轻量级网络结构SKASNet,在连续的SKAS模块中分别使用不同的分组数,从而以相对平滑的方式降低网络参数量并增强不同分组之间的信息交流。在Cityscapes数据集上的实验结果表明,该网络模型仅有1.7 M的参数量,分割精度达到68.5%,与SegNet、ICNet和PSPNet等模型相比,其能够在大幅降低网络参数量的同时取得良好的分割效果。 展开更多
关键词 卷积神经网络 语义分割 选择核卷积 逐层分组卷积 轻量级网络模型
在线阅读 下载PDF
空间分组增强注意力的轻量级人脸表情识别 被引量:1
6
作者 刘劲 罗晓曙 徐照兴 《计算机工程与应用》 CSCD 北大核心 2023年第22期233-241,共9页
由于人脸表情特有的复杂性与微妙性,对表情进行高精度识别是一个困难问题。针对轻量级网络在自然环境下对面部表情的特征提取不够充分、泛化能力不足等问题,提出了一种基于空间分组增强注意力的轻量级人脸表情识别方法。在浅层网络设计... 由于人脸表情特有的复杂性与微妙性,对表情进行高精度识别是一个困难问题。针对轻量级网络在自然环境下对面部表情的特征提取不够充分、泛化能力不足等问题,提出了一种基于空间分组增强注意力的轻量级人脸表情识别方法。在浅层网络设计了并行的深度卷积残差结构,以增强模型对面部表情局部细节的表征能力,并与全局整体特征相融合。在深层网络建立了空间分组增强注意力机制,以提高表情特征分布的稳定性,并强化模型对表情细微变化的判别能力。为了避免模型过拟合,在不大量增加计算复杂度的前提下,对主干网络输出结构进行改进。该方法在公开的七分类数据集RAF-DB、AffectNet-7以及八分类数据集AffectNet-8上的表情识别准确率分别达到了88.33%、63.09%和60.12%,实验结果表明,所提方法在降低网络参数的同时,提高了表情识别准确率,证明了该方法的有效性,具有一定的应用前景。 展开更多
关键词 人脸表情识别 深度可分离卷积 区域特征融合 空间分组增强注意力 轻量化
在线阅读 下载PDF
基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络 被引量:1
7
作者 陈力 丁世飞 于文家 《计算机应用》 CSCD 北大核心 2020年第12期3451-3457,共7页
针对传统卷积神经网络参数量过多、计算复杂度高的问题,提出了基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络架构C-Net。首先,提出了跨通道交叉融合的方法,它在一定程度上克服了分组卷积中各分组之间存在缺乏信息流动的问题,简... 针对传统卷积神经网络参数量过多、计算复杂度高的问题,提出了基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络架构C-Net。首先,提出了跨通道交叉融合的方法,它在一定程度上克服了分组卷积中各分组之间存在缺乏信息流动的问题,简单高效地实现了不同分组之间的信息通信;其次,提出了一种跨模块连接的方法,它克服了传统轻量级架构中各基本构建块之间彼此独立的缺点,实现了同一阶段内具有相同分辨率特征映射的不同模块之间的信息融合,从而增强了特征提取能力;最后,基于提出的两种方法设计了一种新型的轻量级卷积神经网络架构C-Net。C-Net在Food101数据集上的准确率为69.41%,在Caltech256数据集上的准确率为63.93%。实验结果表明,与目前先进的轻量级卷积神经网络模型相比,C-Net降低了存储开销和计算复杂度。在Cifar10数据集上的消融实验验证了所提出的两种方法的有效性。 展开更多
关键词 卷积神经网络 轻量级 分组卷积 跨通道交叉融合 快捷连接 跨模块连接
在线阅读 下载PDF
基于分组卷积进行特征融合的全景分割算法 被引量:9
8
作者 冯兴杰 张天泽 《计算机应用》 CSCD 北大核心 2021年第7期2054-2061,共8页
针对图像全景分割任务对于实践应用中现有网络结构运算不够快速的问题,提出一种基于分组卷积进行特征融合的全景分割算法。首先,通过自底向上的方式选择经典残差网络结构(ResNet)进行特征提取,并采用不同扩张率的空洞卷积空间金字塔池... 针对图像全景分割任务对于实践应用中现有网络结构运算不够快速的问题,提出一种基于分组卷积进行特征融合的全景分割算法。首先,通过自底向上的方式选择经典残差网络结构(ResNet)进行特征提取,并采用不同扩张率的空洞卷积空间金字塔池化操作(ASPP)对提取到的特征进行语义分割与实例分割的多尺度特征融合;然后,通过提出一种单路分组卷积上采样方法,整合语义与实例特征进行上采样特征融合至指定大小;最后,通过对语义分支、实例分支以及实例中心点这三个分支进行损失函数运算以得到更加精细的全景分割输出结果。该模型在CityScapes数据集上与注意力引导的联合全景分割网络(AUNet)、全景特征金字塔网络(Panoptic FPN)、亲和金字塔单阶段实例分割算法(SSAP)、联合全景分割网络(UPSNet)、Panoptic-DeepLab等方法进行了实验对比。实验结果表明,与对比方法中表现最好的Panoptic-DeepLab模型相比,所提模型在极大减少了解码网络参数量的情况下,全景分割质量(PQ)值为0.565,仅下降了0.003,在建筑物、火车、自行车等物体的分割质量上有0.3~5.5的提升,平均精确率(AP)、目标IoU阈值超过50%的平均精确率(AP50)分别提升了0.002与0.014,平均交并比(mIoU)值提升了0.06。可见该方法能提升图像全景分割速度,在PG、AP、mIoU三个指标上均有较好的精度,可以有效地完成全景分割任务。 展开更多
关键词 图像全景分割 语义分割 实例分割 分组卷积 空洞卷积 空间金字塔池化
在线阅读 下载PDF
基于轻量级分组注意力模块的图像分类算法 被引量:8
9
作者 张盼盼 李其申 杨词慧 《计算机应用》 CSCD 北大核心 2020年第3期645-650,共6页
针对图像分类任务中现有神经网络模型对分类对象特征表征能力不足,导致识别精度不高的问题,提出一种基于轻量级分组注意力模块(LGAM)的图像分类算法。该模块从输入特征图的通道和空间两个方向出发重构特征图:首先,将输入特征图沿通道方... 针对图像分类任务中现有神经网络模型对分类对象特征表征能力不足,导致识别精度不高的问题,提出一种基于轻量级分组注意力模块(LGAM)的图像分类算法。该模块从输入特征图的通道和空间两个方向出发重构特征图:首先,将输入特征图沿通道方向进行分组并生成每个分组对应的通道注意力权重,同时采用阶梯型结构解决分组间信息不流通的问题;然后,基于各分组串联成的新特征图生成全局空间注意力权重,通过两种注意力权重加权得到重构特征图;最后,将重构特征图与输入特征图融合得到增强的特征图。以分类Top-1错误率作为评估指标,基于Cifar10和Cifar100数据集以及部分ImageNet2012数据集,对经LGAM增强之后的ResNet、Wide-ResNet、ResNeXt进行对比实验。实验结果表明,经LGAM增强之后的神经网络模型其Top-1错误率均低于增强之前1至2个百分点。因此LGAM能够提升现有神经网络模型的特征表征能力,从而提高图像分类的识别精度。 展开更多
关键词 注意力机制 图像分类 通道注意力 空间注意力 分组卷积
在线阅读 下载PDF
基于注意力和分组卷积的眼底图像多病变自动诊断 被引量:2
10
作者 蒋杰伟 郭刘飞 +3 位作者 巩稼民 强薇 吴成超 李中文 《传感器与微系统》 CSCD 北大核心 2023年第5期152-155,160,共5页
青光眼性视盘改变、视网膜出血和渗出是诊断眼底疾病的主要特征,传统方法可诊断是否患有眼底疾病,但难以对眼底疾病诊断结果给出合理的解释。鉴于此,提出了一种融合双重注意力机制的卷积神经网络(CNN),实现了眼底多病变特征的自动诊断。... 青光眼性视盘改变、视网膜出血和渗出是诊断眼底疾病的主要特征,传统方法可诊断是否患有眼底疾病,但难以对眼底疾病诊断结果给出合理的解释。鉴于此,提出了一种融合双重注意力机制的卷积神经网络(CNN),实现了眼底多病变特征的自动诊断。CNN采用残差结构,在残差块中利用分组卷积以减少网络参数量,并在每组卷积之后嵌入通道和空间注意力机制以提升眼底病变诊断的准确率。该模型在宁波市眼科医院临床数据上进行了实验,青光眼性视盘改变、视网膜渗出和出血3种病变的诊断准确率分别为98.17%、97.49%、97.15%,结果表明:该模型在眼底多病变诊断中表现出很好的特征提取能力和诊断性能。 展开更多
关键词 通道注意力机制 分组卷积 空间注意力机制 多病变诊断
在线阅读 下载PDF
基于注意力机制和有效分解卷积的实时分割算法 被引量:6
11
作者 文凯 唐伟伟 熊俊臣 《计算机应用》 CSCD 北大核心 2022年第9期2659-2666,共8页
针对现阶段实时语义分割算法计算成本高和内存占用大而无法满足实际场景需求的问题,提出一种新型的浅层的轻量级实时语义分割算法——基于注意力机制和有效分解卷积的实时分割算法(AEFNet)。首先,利用一维非瓶颈结构(Non-bottleneck-1D... 针对现阶段实时语义分割算法计算成本高和内存占用大而无法满足实际场景需求的问题,提出一种新型的浅层的轻量级实时语义分割算法——基于注意力机制和有效分解卷积的实时分割算法(AEFNet)。首先,利用一维非瓶颈结构(Non-bottleneck-1D)构建轻量级分解卷积模块以提取丰富的上下文信息并减少运算量,同时以一种简单的方式增强算法学习能力并利于提取细节信息;然后,结合池化操作和注意力细化模块(ARM)构建全局上下文注意力模块以捕捉全局信息并细化算法的每个阶段,从而优化分割效果。算法在公共数据集cityscapes和camvid上进行验证,并在cityscapes测试集上获得精度为74.0%和推理速度为118.9帧速率(FPS),相比深度非对称瓶颈网络(DABNet),所提算法在精度上提高了约4个百分点,推理速度提升了14.7 FPS,与最近高效的增强非对称卷积网络(EACNet)相比,所提算法精度略低0.2个百分点,然而推理速度提高了6.9 FPS。实验结果表明:所提算法能够较为准确地识别场景信息,并能满足实时性要求。 展开更多
关键词 分解卷积 注意力机制 空间细节信息 上下文信息 轻量级算法
在线阅读 下载PDF
轻量级的三维点云识别方法 被引量:1
12
作者 欧阳宁 陆兆能 林乐平 《计算机工程与设计》 北大核心 2021年第10期2931-2937,共7页
针对当前三维点云识别方法存在时间和空间复杂度较高的问题,提出一种轻量级的三维点云识别方法。使用最远点采样法从原始点云中获取采样点,在采样点处构建K近邻图来有效获取点云的局部结构信息,大幅度降低网络的计算复杂度;使用注意力... 针对当前三维点云识别方法存在时间和空间复杂度较高的问题,提出一种轻量级的三维点云识别方法。使用最远点采样法从原始点云中获取采样点,在采样点处构建K近邻图来有效获取点云的局部结构信息,大幅度降低网络的计算复杂度;使用注意力机制突出局部区域不同K近邻点的重要性,达到增强局部结构特征的目的;利用分组卷积提取高层次的局部结构特征的同时减少卷积层的参数量。在保证较高的识别准确率的前提下减少全连接层的参数量。在ModelNet40数据集上的实验结果表明,该方法的识别准确率达到同等或更优水平,网络模型的参数量得到大幅度减少,训练时间和测试时间更短,同时保持较高的鲁棒性。 展开更多
关键词 三维点云识别 K近邻图 最远采样法 注意力机制 分组卷积 轻量级
在线阅读 下载PDF
改进残差结构的轻量级故障诊断方法 被引量:5
13
作者 刘芯志 彭成 +1 位作者 满君丰 刘翊 《计算机工程与设计》 北大核心 2022年第8期2303-2310,共8页
针对大型机械装备环境噪声复杂,深度学习网络层数过深导致的巨大计算开销以及故障诊断人工特征提取的复杂性,提出改进残差结构的轻量级SCARN模型。SCARN模型使用蓝图可分离卷积代替常规卷积层,减少大量参数,设计轻量级空间通道注意力结... 针对大型机械装备环境噪声复杂,深度学习网络层数过深导致的巨大计算开销以及故障诊断人工特征提取的复杂性,提出改进残差结构的轻量级SCARN模型。SCARN模型使用蓝图可分离卷积代替常规卷积层,减少大量参数,设计轻量级空间通道注意力结构,加强特征表达能力,改进深度残差收缩模块,提高模型复杂噪声场景的鲁棒性。通过增加不同幅值的高斯白噪声模拟轴承信号复杂环境场景。实验结果表明,该模型4种评价指标均优于对比算法,具有良好的抗噪性能。 展开更多
关键词 蓝图可分离卷积 空间通道注意力 深度残差收缩模块 轻量级 高斯白噪声
在线阅读 下载PDF
改进YOLOv8的实时轻量化鲁棒绿篱检测算法
14
作者 张佳承 韦锦 陈义时 《计算机工程》 北大核心 2025年第7期362-374,共13页
针对道路两侧绿篱修剪的目标检测过程中对算法实时性、轻量化的要求以及算法在实际检测中的精度和光照鲁棒性问题,提出一种基于YOLOv8n的算法MGW-YOLO,并给出一种新的C2f_ModuGhost+模块来替换主干网络中的C2f模块,其中设计的调制可变... 针对道路两侧绿篱修剪的目标检测过程中对算法实时性、轻量化的要求以及算法在实际检测中的精度和光照鲁棒性问题,提出一种基于YOLOv8n的算法MGW-YOLO,并给出一种新的C2f_ModuGhost+模块来替换主干网络中的C2f模块,其中设计的调制可变形卷积增加了偏移量特征通道数,以加速模型的推理,增强算法实时性。在颈部网络中引入分组空间卷积(GSConv)轻量级卷积技术和slim-neck设计范式,并通过融合标准卷积、深度可分离卷积和Shuffle模块的思想,降低模型的参数量,实现模型的轻量化。设计一种具有双重加权机制的Focal-WIoU损失函数,WIoU中的双层交叉注意力机制可有效降低多个绿篱相连和遮挡时的误检率,并且利用Focal Loss权重因子提升对特殊形状绿篱等难分类样本的检测精度。另外采用TRADES方法的对抗训练策略,在分类问题鲁棒性与精度之间进行有效权衡。实验结果表明,相比基线算法YOLOv8n,MGW-YOLO的mAP@0.5和mAP@0.5∶0.95分别提高了3.29和2.87百分点,在无人驾驶底盘上的实验结果表明,MGW-YOLO相较于原始算法的预处理时间、每帧平均推理时间和每帧后处理时间分别降低了0.7 ms、10.7 ms和0.7 ms,检测速度提升了15.7帧/s,适用于绿篱修剪机在道路两侧实时性作业的需求。 展开更多
关键词 YOLOv8算法 目标检测 C2f_ModuGhost+模块 分组空间卷积轻量级卷积 Focal-WIoU损失函数 对抗训练
在线阅读 下载PDF
复杂场景下的多人人体姿态估计算法
15
作者 石磊 王天宝 +3 位作者 孟彩霞 王清贤 高宇飞 卫琳 《郑州大学学报(理学版)》 北大核心 2025年第4期1-7,共7页
复杂场景下人员的交叉遮挡,导致现有的人体姿态估计算法存在准确度不高和人体骨架错连的问题。为此,提出一种复杂场景下的多人人体姿态估计优化算法。首先,使用分组分块级联卷积替换普通卷积,结合特征融合促进特征通道之间的信息交互,... 复杂场景下人员的交叉遮挡,导致现有的人体姿态估计算法存在准确度不高和人体骨架错连的问题。为此,提出一种复杂场景下的多人人体姿态估计优化算法。首先,使用分组分块级联卷积替换普通卷积,结合特征融合促进特征通道之间的信息交互,在不引入额外计算成本的前提下提高算法精度;其次,引入空间注意力机制挖掘与人体姿态估计任务相关的空间语义特征,将网络结构并行化处理以提高算法性能;最后,对大卷积核和空间注意力机制的嵌入位置进行轻量化处理,减少时间开销。与现有的自底向上的姿态估计算法OpenPifPaf++相比,所提算法在COCO 2017数据集上平均准确率提高0.8个百分点;在CrowdPose数据集上平均准确率比OpenPifPaf算法提高1.2个百分点,复杂场景下对应的准确率提高1.5个百分点。 展开更多
关键词 复杂场景 多人人体姿态估计 分组卷积 空间注意力机制 轻量化
在线阅读 下载PDF
改进的YOLOv7轻量化目标检测模型
16
作者 贾亮 戚丽瑾 +1 位作者 林铭文 谈瑾 《计算机工程与设计》 北大核心 2025年第8期2350-2357,共8页
针对目标检测模型计算量较大、难部署的问题,提出改进的YOLOv7模型。引入FasterNet轻量级网络结构,显著降低参数量和计算量。采用多样化分支块增强模型对输入数据的特征表达能力。引入分组空间卷积改进网络的Neck层并更换损失函数,使其... 针对目标检测模型计算量较大、难部署的问题,提出改进的YOLOv7模型。引入FasterNet轻量级网络结构,显著降低参数量和计算量。采用多样化分支块增强模型对输入数据的特征表达能力。引入分组空间卷积改进网络的Neck层并更换损失函数,使其在学习和表征复杂数据时更加有效并减少信息的丢失。利用模型剪枝和知识蒸馏技术对模型再次浓缩。实验结果表明,改进的模型拥有高精确度的同时,参数量和计算量分别下降了64%和54%,模型大小仅为5.3 MB,具有良好的应用前景。 展开更多
关键词 深度学习 目标检测 快速区域卷积网络 多样化分支块 分组空间卷积 损失函数 模型剪枝 知识蒸馏
在线阅读 下载PDF
基于改进YOLOv8n的林草火灾检测算法
17
作者 赵佳硕 马晓春 刘舰泽 《森林工程》 北大核心 2025年第5期1013-1024,共12页
在林草火灾场景中,明火形态的多样性以及环境的复杂性可能导致误检或漏检的现象发生,为此,针对森林与草原火灾提出一种基于改进的YOLOv8n火灾检测算法(YOLOv8n-CSA),CSA(channel-spatial attention)为通道-空间注意力模块,引入分组混洗... 在林草火灾场景中,明火形态的多样性以及环境的复杂性可能导致误检或漏检的现象发生,为此,针对森林与草原火灾提出一种基于改进的YOLOv8n火灾检测算法(YOLOv8n-CSA),CSA(channel-spatial attention)为通道-空间注意力模块,引入分组混洗卷积模块(group shuffle convolution,GSConv)替换原YOLOv8n中第3层标准卷积模块(convolution,Conv),降低模型计算量,提高特征提取能力。并且在head中引入Slim-Neck结构进一步降低模型计算量。同时设计YOLOv8n-CSA融入Backbone部分,以增强输入特征图的表达能力。该模块结合通道注意力、通道洗牌和空间注意力机制,旨在捕捉特征图中的全局依赖关系。基于林草火灾数据集,在未导入预训练模型的情况下,提出的火灾检测网络模型在测试的数据集上相比原模型YOLOv8n,其精确率(Precision)提高了3.7%、召回率(Recall)提高了1.51%、平均精度均值(mAP50)提高了3.24%、计算复杂度(GFLOPs)下降5.62%。试验结果表明,该算法验证计算量减少的同时,能够提升火灾迹象目标的检测性能。 展开更多
关键词 火灾检测 YOLOv8 通道空间注意力 Slim-Neck结构 分组混洗卷积模块GSConv
在线阅读 下载PDF
基于改进YOLOv8的小目标检测算法
18
作者 邓立国 吴毅麒 《现代电子技术》 北大核心 2025年第14期169-177,共9页
小目标检测在自动驾驶、医学诊断、工业质检等领域的应用需求日益凸显。针对现有小目标检测算法存在的误检、漏检以及检测精度低等问题,提出一种基于改进YOLOv8的小目标检测算法,即PGA-YOLOv8。该算法以YOLOv8为基础模型,结合注意力机... 小目标检测在自动驾驶、医学诊断、工业质检等领域的应用需求日益凸显。针对现有小目标检测算法存在的误检、漏检以及检测精度低等问题,提出一种基于改进YOLOv8的小目标检测算法,即PGA-YOLOv8。该算法以YOLOv8为基础模型,结合注意力机制来提高对小目标的定位能力;在特征融合网络中改进特征融合策略(ASFF),增加1个检测层来学习浅层的特征,以更好地利用各层次特征信息;将YOLOv8模型中部分普通卷积替换为分组重组卷积(GSConv)以优化网络结构。最后,在常用基准数据集(VOC2012)和航空图像数据集(AI-TOD)上,以YOLOv8为基准模型设置多组实验,验证改进的各种技术的有效性以及PGA-YOLOv8算法的检测能力。实验结果表明,相较于YOLOv8算法,所提算法在两个数据集中平均精度均值(mAP)分别提高了2.576%和6.389%。 展开更多
关键词 小目标检测 YOLOv8 极化自注意力模块 自适应空间特征融合策略 分组重组卷积 性能评估
在线阅读 下载PDF
基于动态金字塔和子空间注意力的图像超分辨率重建网络 被引量:6
19
作者 何鹏浩 余映 徐超越 《计算机科学》 CSCD 北大核心 2022年第S02期423-430,共8页
针对现有单图像超分辨率卷积神经网络存在模型参数过多以及重建失真过大的问题,提出了一种基于动态金字塔结构与子空间注意力模块的轻量级单图像超分辨率网络模型。首先,所采用的动态多尺度金字塔特征组合模块的网络主体由动态卷积和金... 针对现有单图像超分辨率卷积神经网络存在模型参数过多以及重建失真过大的问题,提出了一种基于动态金字塔结构与子空间注意力模块的轻量级单图像超分辨率网络模型。首先,所采用的动态多尺度金字塔特征组合模块的网络主体由动态卷积和金字塔分组卷积构成。其次,动态卷积可以根据不同的图像内容自适应地进行不同的卷积操作,从而对不同的图像提取出不同的特征;金字塔分组卷积不仅可以更好地提取多尺度图像特征信息,而且能够有效降低网络模型的参数量。最后,在网络模型末端采用子空间注意力模块,将图像的通道空间分为多个子空间,并为每个子空间学习不同的注意力图,这样不仅可以更好地捕获图像的跨通道相关信息,而且可以有效融合各子空间的图像特征信息。与现有主流算法相比,所提方法不仅具有更小的网络模型参数量,而且重建出的超分辨率图像在视觉效果和定量分析方面均能取得更好的表现。 展开更多
关键词 超分辨率 轻量级 动态卷积 金字塔分组卷积 空间注意力模块
在线阅读 下载PDF
基于空间语义分割的多车道线检测跟踪网络 被引量:3
20
作者 石金鹏 张旭 《光学精密工程》 EI CAS CSCD 北大核心 2023年第9期1357-1365,共9页
基于深度学习的目标检测网络在车道线识别领域依旧存在车道区别不明显,识别精度低,误检率、漏检率高等问题。为了解决这些问题,提出了一种基于空间实例分割的轻量级车道检测跟踪网络。该方法在编码部分使用VGG16网络和空间卷积神经网络... 基于深度学习的目标检测网络在车道线识别领域依旧存在车道区别不明显,识别精度低,误检率、漏检率高等问题。为了解决这些问题,提出了一种基于空间实例分割的轻量级车道检测跟踪网络。该方法在编码部分使用VGG16网络和空间卷积神经网络来提高网络结构学习空间关系的能力,解决了预测车道线出现模糊、不连续等问题;基于LaneNet将编码输出后的两个分支任务相耦合,以改进前景与背景识别效果不佳和车道间区分不明显的问题。最后,该方法在TuSimple数据集中与其他5种基于语义分割的车道线算法进行对比。实验表明,本文算法的准确率评分为97.12%,误检率与漏检率均优于其他网络,并且误检率与漏检率相比于LaneNet分别降低了44.87%和12.7%,基本满足实时车道线检测跟踪的要求。 展开更多
关键词 机器视觉 语义分割 车道线检测跟踪 轻量级卷积神经网络 空间卷积神经网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部