期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于分组特征提取的轻量型多源目标检测
1
作者 万军 周凯 何文磊 《红外技术》 北大核心 2025年第3期307-315,共9页
为兼顾多源目标检测网络的精度与效率,将分组卷积作用于目标多模态特征中,并配合注意力多尺度结构以及改进的目标框筛选策略,设计了一种轻量级的红外与可见光目标检测模型。模型先以多种特征降维策略对输入图像进行采样,降低噪声及冗余... 为兼顾多源目标检测网络的精度与效率,将分组卷积作用于目标多模态特征中,并配合注意力多尺度结构以及改进的目标框筛选策略,设计了一种轻量级的红外与可见光目标检测模型。模型先以多种特征降维策略对输入图像进行采样,降低噪声及冗余信息的影响;其次,根据特征通道所属模态进行分组,并利用深度可分离卷积分别对红外特征、可见光特征以及融合特征进行提取,提升多源特征提取结构的多样性以及高效性;然后,针对各维度多模态特征,引入改进的注意力机制来增强关键特征,再结合邻域多尺度融合结构保障网络的尺度不变性;最后,利用优化后的非极大值抑制算法来综合各尺度目标预测结果,精确检测出各个目标。通过在KAIST、FLIR、RGBT公开数据集上的测试结果表明,所提模型有效提升了目标检测性能,并且相对于同类型多源目标检测方法,该模型也体现出较高的鲁棒性和泛化性,可以更好地实现目标检测。 展开更多
关键词 多源目标检测 分组特征提取 注意力多尺度 非极大值抑制
在线阅读 下载PDF
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法 被引量:1
2
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
在线阅读 下载PDF
Machine-learning-aided precise prediction of deletions with next-generation sequencing
3
作者 管瑞 髙敬阳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部