期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于压缩激励残差分组扩张卷积和密集线性门控Unet歌声分离方法
1
作者 张天骐 熊天 +1 位作者 吴超 闻斌 《应用科学学报》 CAS CSCD 北大核心 2023年第5期815-830,共16页
针对Unet频域歌声分离网络模型对语音时序信息的捕获困难以及底层特征利用率不高的问题,设计了一种相比于基线Unet网络参数量更小且歌声分离效果更好的卷积神经网络。首先设计了一种残差分组扩张卷积结合压缩激励模块,并将其引入到编码... 针对Unet频域歌声分离网络模型对语音时序信息的捕获困难以及底层特征利用率不高的问题,设计了一种相比于基线Unet网络参数量更小且歌声分离效果更好的卷积神经网络。首先设计了一种残差分组扩张卷积结合压缩激励模块,并将其引入到编码和解码阶段,该模块在参数量减少和增大网络感受野的同时自适应学习不同通道的重要特征,不但增强了有用特征,而且还抑制了无用特征。其次在传输层将线性门控单元采用密集相加连接来增强网络在特征传递过程中对时序特征的获取,并且使用扩张卷积来代替普通卷积以扩大网络的感受野。最后使用注意力门控机制来代替基线Unet中的跳跃连接以加强网络对底层特征的利用。在Ccmixter和MUSDB18数据集中进行实验,与基线网络相比,歌声分离的性能指标都有提升,并且其参数量大约只有基线网络的1/5。 展开更多
关键词 歌声分离 分组扩张卷积 门控线性单元 注意力门控
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部