期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于极端不平衡学习的泛化低压异常箱表关系识别研究与应用
被引量:
2
1
作者
管永明
王刚
+3 位作者
骆凯波
吕梁
吕晓雯
史玉良
《电子学报》
EI
CAS
CSCD
北大核心
2021年第8期1507-1514,共8页
针对低压配电网箱表关系存在人工核查成本高、异常案例少、难以实现异常规律捕获的问题,采用极端不平衡分类学习方法实现低压异常箱表关系识别的泛化应用推广.通过电压原理识别出部分异常箱表关系样本集,随后构建CNN(卷积神经网络)异常...
针对低压配电网箱表关系存在人工核查成本高、异常案例少、难以实现异常规律捕获的问题,采用极端不平衡分类学习方法实现低压异常箱表关系识别的泛化应用推广.通过电压原理识别出部分异常箱表关系样本集,随后构建CNN(卷积神经网络)异常箱表关系识别模型,通过样本三分类赋权值实现类别均衡处理;并在模型推广应用过程中,采用强化学习实现离线模型的在线泛化学习,并以分组模型交互学习和竞争优化的方式筛选出最优泛化识别模型.实验证明,通过人工核查和数据反馈,该方法可实现模型对异常样本数据分布规律的自拟合学习,提高模型对不同应用环境的泛化性,进一步降低人工现场核查工作量,保障低压台区用户拓扑网络关系的准确性.
展开更多
关键词
极端不平衡分类
电压曲线识别
卷积神经网络
ADABOOST算法
分组强化学习
在线阅读
下载PDF
职称材料
题名
基于极端不平衡学习的泛化低压异常箱表关系识别研究与应用
被引量:
2
1
作者
管永明
王刚
骆凯波
吕梁
吕晓雯
史玉良
机构
山东大学软件学院
山大地纬软件股份有限公司
国网重庆市电力公司
出处
《电子学报》
EI
CAS
CSCD
北大核心
2021年第8期1507-1514,共8页
基金
国家863重点研发计划(No.2018YFB1003804)。
文摘
针对低压配电网箱表关系存在人工核查成本高、异常案例少、难以实现异常规律捕获的问题,采用极端不平衡分类学习方法实现低压异常箱表关系识别的泛化应用推广.通过电压原理识别出部分异常箱表关系样本集,随后构建CNN(卷积神经网络)异常箱表关系识别模型,通过样本三分类赋权值实现类别均衡处理;并在模型推广应用过程中,采用强化学习实现离线模型的在线泛化学习,并以分组模型交互学习和竞争优化的方式筛选出最优泛化识别模型.实验证明,通过人工核查和数据反馈,该方法可实现模型对异常样本数据分布规律的自拟合学习,提高模型对不同应用环境的泛化性,进一步降低人工现场核查工作量,保障低压台区用户拓扑网络关系的准确性.
关键词
极端不平衡分类
电压曲线识别
卷积神经网络
ADABOOST算法
分组强化学习
Keywords
extreme unbalanced classification
voltage curve identification
convolutional neural network
Adaboost algorithm
group reinforcement learning
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于极端不平衡学习的泛化低压异常箱表关系识别研究与应用
管永明
王刚
骆凯波
吕梁
吕晓雯
史玉良
《电子学报》
EI
CAS
CSCD
北大核心
2021
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部