This paper introduces an adaptive traffic allocation scheme with cooperation of multiple Radio Access Networks (RANs) in universal wireless environments.The different cooperation scenarios are studied,and based on the...This paper introduces an adaptive traffic allocation scheme with cooperation of multiple Radio Access Networks (RANs) in universal wireless environments.The different cooperation scenarios are studied,and based on the scenario of cooperation in both network layer and terminal layer,an open queuing system model,which is aiming to depict the characteristics of packet loss rate of wireless communication networks,is proposed to optimize the traffic allocation results.The analysis and numerical simulations indicate that the proposed scheme achieves inter-networking load balance tominimize the whole transmission delay and expands the communication ability of single-mode terminals to support high data rate traffics.展开更多
The fast growth of Internet has cre-ated the need for high-speed switches. Re-cently, the crosspoint-queue switch has at-tracted attention because of its scalability and high performance. However, the Cross-point-Queu...The fast growth of Internet has cre-ated the need for high-speed switches. Re-cently, the crosspoint-queue switch has at-tracted attention because of its scalability and high performance. However, the Cross-point-Queue switch does not perform well under non-uniform traffic. To overcome this limitation, the Load-Balanced Cross-point-Queued switch architecture has been proposed. In this architecture, a load-balance stage is placed ahead of the Cross-point-Queued stage. The load-balance stage transforms the incoming non-uniform traffic into nearly uniform traffic at the input port of the second stage. To avoid out-of-order cells, this stage employs flow-based queues in each crosspoint buffer. Analysis and simulation results reveal that under non-uniform traffic, this new switch architecture achieves a delay performance similar to that of the Out-put-Queued switch without the need for inter- nal acceleration. In addition, its throughput is much better than that of the pure cross- point-queued switch. Finally, it can achieve the same packet loss rate as the cross- point-queue switch, while using a buffer size that is only 65% of that used by the cross- point-queue switch.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.60971125National Major Project under Grant No.2011ZX03003-003-01
文摘This paper introduces an adaptive traffic allocation scheme with cooperation of multiple Radio Access Networks (RANs) in universal wireless environments.The different cooperation scenarios are studied,and based on the scenario of cooperation in both network layer and terminal layer,an open queuing system model,which is aiming to depict the characteristics of packet loss rate of wireless communication networks,is proposed to optimize the traffic allocation results.The analysis and numerical simulations indicate that the proposed scheme achieves inter-networking load balance tominimize the whole transmission delay and expands the communication ability of single-mode terminals to support high data rate traffics.
文摘The fast growth of Internet has cre-ated the need for high-speed switches. Re-cently, the crosspoint-queue switch has at-tracted attention because of its scalability and high performance. However, the Cross-point-Queue switch does not perform well under non-uniform traffic. To overcome this limitation, the Load-Balanced Cross-point-Queued switch architecture has been proposed. In this architecture, a load-balance stage is placed ahead of the Cross-point-Queued stage. The load-balance stage transforms the incoming non-uniform traffic into nearly uniform traffic at the input port of the second stage. To avoid out-of-order cells, this stage employs flow-based queues in each crosspoint buffer. Analysis and simulation results reveal that under non-uniform traffic, this new switch architecture achieves a delay performance similar to that of the Out-put-Queued switch without the need for inter- nal acceleration. In addition, its throughput is much better than that of the pure cross- point-queued switch. Finally, it can achieve the same packet loss rate as the cross- point-queue switch, while using a buffer size that is only 65% of that used by the cross- point-queue switch.