期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RFE+CatBoost模型的异常用电检测方法研究
被引量:
3
1
作者
冉哲
李英娜
刘爱莲
《电视技术》
2021年第8期121-126,132,共7页
针对传统电力检测领域中异常用电检测模型需要调节大量超参数导致异常用电检测效率低下,以及模型选取特征不能充分反映实际用电情况导致分类精度不高的问题,提出一种基于RFE+CatBoost模型的异常用电检测方法。较传统的异常用电检测方法...
针对传统电力检测领域中异常用电检测模型需要调节大量超参数导致异常用电检测效率低下,以及模型选取特征不能充分反映实际用电情况导致分类精度不高的问题,提出一种基于RFE+CatBoost模型的异常用电检测方法。较传统的异常用电检测方法而言,CatBoost算法降低了模型检测对于超参数的依赖。以用户用电数据作为研究对象,结合RFE算法分析用户在用电表现上的不同特征,采用分类预测算法对异常用电行为进行进一步研究,最后通过云南某地用户用电数据集进行验证,与其他用电异常检测模型进行对比,实验证明所提模型具有很好的检测能力,对于提升企业用电异常检测效率、指导用户更好地用电具有重要意义。
展开更多
关键词
异常用电检测
特征递归消除
分类预测算法
在线阅读
下载PDF
职称材料
题名
基于RFE+CatBoost模型的异常用电检测方法研究
被引量:
3
1
作者
冉哲
李英娜
刘爱莲
机构
昆明理工大学信息工程与自动化学院
云南省计算机技术应用重点实验室
出处
《电视技术》
2021年第8期121-126,132,共7页
文摘
针对传统电力检测领域中异常用电检测模型需要调节大量超参数导致异常用电检测效率低下,以及模型选取特征不能充分反映实际用电情况导致分类精度不高的问题,提出一种基于RFE+CatBoost模型的异常用电检测方法。较传统的异常用电检测方法而言,CatBoost算法降低了模型检测对于超参数的依赖。以用户用电数据作为研究对象,结合RFE算法分析用户在用电表现上的不同特征,采用分类预测算法对异常用电行为进行进一步研究,最后通过云南某地用户用电数据集进行验证,与其他用电异常检测模型进行对比,实验证明所提模型具有很好的检测能力,对于提升企业用电异常检测效率、指导用户更好地用电具有重要意义。
关键词
异常用电检测
特征递归消除
分类预测算法
Keywords
abnormal electricity detection
recursive feature elimination
classification prediction algorithm
分类号
TM73 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RFE+CatBoost模型的异常用电检测方法研究
冉哲
李英娜
刘爱莲
《电视技术》
2021
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部