期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
土地资源优化配置原理分析及分类结构模型 被引量:5
1
作者 张光宇 刘永清 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 1998年第5期149-152,共4页
分析了土地资源的优化配置原理,根据可拓学的理论和方法,对系统结构模型加以改进,设计了土地资源优化配置的分类结构模型,并应用该模型来解决土地资源优化配置中的空间优化布局问题.
关键词 土地资源 优化配置 分类结构模型
在线阅读 下载PDF
基于特征融合的层次结构微博情感分类 被引量:6
2
作者 朱宪莹 刘箴 +3 位作者 金炜 刘婷婷 刘翠娟 柴艳杰 《电信科学》 北大核心 2016年第7期106-114,共9页
情感分类是观点挖掘的热点研究之一,微博文本情感分类具有很高的应用价值。鉴于传统特征选择方法存在语义缺陷,采用神经网络语言模型,提出了基于概率模型的对词向量进行权重分配的深层特征表示方法,构建文本语义向量。将文本深层特征与... 情感分类是观点挖掘的热点研究之一,微博文本情感分类具有很高的应用价值。鉴于传统特征选择方法存在语义缺陷,采用神经网络语言模型,提出了基于概率模型的对词向量进行权重分配的深层特征表示方法,构建文本语义向量。将文本深层特征与浅层特征融合,构建融合语义信息的特征向量,弥补传统特征选择方法语义的缺陷。采用SVM层次结构分类模型,实现多种情感分类。实验结果表明,采用特征融合的层次结构情感分类方法,能有效提高微博情感分类的准确率。 展开更多
关键词 情感分类 词向量 深层特征 特征融合 层次结构分类模型
在线阅读 下载PDF
IP服务质量研究
3
作者 王惠琴 袁占亭 +1 位作者 李明 薛建彬 《甘肃工业大学学报》 北大核心 2001年第4期77-80,共4页
阐述了 IP网络具有 QoS(Quality of Service)保证的必要性,分析了 IETF提出的综合业务结构模型(Int_Serv)与分类业务结构模型(Diff_Serv)的异同和适用环境以及解决拥塞控制的具体方... 阐述了 IP网络具有 QoS(Quality of Service)保证的必要性,分析了 IETF提出的综合业务结构模型(Int_Serv)与分类业务结构模型(Diff_Serv)的异同和适用环境以及解决拥塞控制的具体方法,给出了实现 IP网络 QoS的解决方案 MPLS+Diff_Serv. 展开更多
关键词 IP 服务质量 Int-Serv DIFF-SERV 流量控制 QOS 综合业务结构模型 计算机网络 分类业务结构模型
在线阅读 下载PDF
Hierarchical Semantic-Category-Tree Model for Chinese-English Machine Translation 被引量:1
4
作者 Zhu Xiaojian Jin Yaohong 《China Communications》 SCIE CSCD 2012年第12期80-92,共13页
We introduce a novel Sermntic-Category- Tree (SCT) model to present the sen-antic structure of a sentence for Chinese-English Machine Translation (MT). We use the SCT model to handle the reordering in a hierarchic... We introduce a novel Sermntic-Category- Tree (SCT) model to present the sen-antic structure of a sentence for Chinese-English Machine Translation (MT). We use the SCT model to handle the reordering in a hierarchical structure in which one reordering is dependent on the others. Different from other reordering approaches, we handle the reordering at three levels: sentence level, chunk level, and word level. The chunk-level reordering is dependent on the sentence-level reordering, and the word-level reordering is dependent on the chunk-level reordering. In this paper, we formally describe the SCT model and discuss the translation strategy based on the SCT model. Further, we present an algorithm for analyzing the source language in SCT and transforming the source SCT into the target SCT. We apply the SCT model to a role-based patent text MT to evaluate the ability of the SCT model. The experimental results show that SCT is efficient in handling the hierarehical reordering operation in MT. 展开更多
关键词 REORDERING SCT MT function word
在线阅读 下载PDF
A data structure and function classification based method to evaluate clustering models for gene expression data
5
作者 易东 杨梦苏 +2 位作者 黄明辉 李辉智 王文昌 《Journal of Medical Colleges of PLA(China)》 CAS 2002年第4期312-317,共6页
Objective:To establish a systematic framework for selecting the best clustering algorithm and provide an evaluation method for clustering analyses of gene expression data. Methods: Based on data structure (internal in... Objective:To establish a systematic framework for selecting the best clustering algorithm and provide an evaluation method for clustering analyses of gene expression data. Methods: Based on data structure (internal information) and function classification (external information), the evaluation of gene expression data analyses were carried out by using 2 approaches. Firstly, to assess the predictive power of clusteringalgorithms, Entropy was introduced to measure the consistency between the clustering results from different algorithms and the known and validated functional classifications. Secondly, a modified method of figure of merit (adjust-FOM) was used as internal assessment method. In this method, one clustering algorithm was used to analyze all data but one experimental condition, the remaining condition was used to assess the predictive power of the resulting clusters. This method was applied on 3 gene expression data sets (2 from the Lyer's Serum Data Sets, and 1 from the Ferea's Saccharomyces Cerevisiae Data Set). Results: A method based on entropy and figure of merit (FOM) was proposed to explore the results of the 3 data sets obtained by 6 different algorithms, SOM and Fuzzy clustering methods were confirmed to possess the highest ability to cluster. Conclusion: A method based on entropy is firstly brought forward to evaluate clustering analyses.Different results are attained in evaluating same data set due to different function classification. According to the curves of adjust_FOM and Entropy_FOM, SOM and Fuzzy clustering methods show the highest ability to cluster on the 3 data sets. 展开更多
关键词 gene expression evaluation of clustering adjust- FOM ENTROPY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部