期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8的输电线路绝缘子表面缺陷识别算法 被引量:2
1
作者 熊伟 路鑫 +1 位作者 邱维进 王平强 《电子测量技术》 北大核心 2025年第2期178-188,共11页
针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,... 针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,在模型的颈部网络增加GD机制,减少特征融合过程中信息的丢失,提升小目标检测能力;最后,采用ATFL分类损失函数,削弱复杂背景对小目标检测的干扰,引入PIOU边界框损失函数,提高识别精度,加快模型收敛速度。实验结果表明,该算法的mAP50达到94.1%,精确率达到92.5%,召回率达到91.3%,相较于基线模型分别提高了3.1%、0.7%、3.9%,且综合性能优于最近的YOLOv9s、YOLOv10s等代表性算法。 展开更多
关键词 目标检测 绝缘子表面缺陷识别 小目标 卷积和注意力融合 边界框损失函数 分类损失函数
在线阅读 下载PDF
基于分类不确定性的伪标签目标检测算法 被引量:3
2
作者 雷洁 饶文碧 +1 位作者 杨焱超 熊盛武 《计算机工程》 CAS CSCD 北大核心 2023年第1期49-56,共8页
伪标签目标检测算法利用大量未标注数据生成伪标签数据来增加训练数据规模,从而提高目标检测模型的性能。针对伪标签数据中存在大量错误标注数据且伪标签目标检测模型性能难以提升的问题,提出基于SoftTeacher-CUC的伪标签目标检测算法。... 伪标签目标检测算法利用大量未标注数据生成伪标签数据来增加训练数据规模,从而提高目标检测模型的性能。针对伪标签数据中存在大量错误标注数据且伪标签目标检测模型性能难以提升的问题,提出基于SoftTeacher-CUC的伪标签目标检测算法。SoftTeacher-CUC算法在SoftTeacher伪标签目标检测算法的基础上,利用分类不确定性方法计算模型生成的伪标签分类结果的不确定性来判断伪标签是否可靠,不确定性越低说明伪标签的分类结果越可靠。在此基础上,将计算得到的不确定性作为权重加入伪标签数据的分类损失函数中,进一步减少高不确定性伪标签为模型带来的负面影响。根据Teacher模型中不同模块的作用,采用不同权重的指数滑动平均方法更新Teacher模型,降低Teacher模型和Student模型参数之间的相似性,使一致性正则化方法发挥效用。实验结果表明,在标注数据分别占训练集1%、5%和10%的情况下,与SoftTeacher算法相比,SoftTeacher-CUC算法的平均精度均值分别提高了1.4、1.2和1.7个百分点,在标注数据较少的情况下,该算法具有更好的检测效果。 展开更多
关键词 目标检测 伪标签 分类不确定性 指数滑动平均 分类损失函数 一致性正则化
在线阅读 下载PDF
开放场景下短时语音说话人识别系统的优化设计 被引量:1
3
作者 郭新 邓爱文 +1 位作者 罗程方 邓飞其 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第5期585-591,共7页
为适应开放场景下说话人识别短时语音的应用需要,本文对说话人识别模型进行优化,提升了模型的准确率和鲁棒性.为了实现对重要频率特征的筛选,提出基于重加权的特征增强层及网络,起到增强特征表达的作用.将人脸识别领域的误分类样本损失... 为适应开放场景下说话人识别短时语音的应用需要,本文对说话人识别模型进行优化,提升了模型的准确率和鲁棒性.为了实现对重要频率特征的筛选,提出基于重加权的特征增强层及网络,起到增强特征表达的作用.将人脸识别领域的误分类样本损失函数首次引入到说话人识别领域,提高对困难样本的挖掘能力.提出基于误分类样本挖掘的分类损失与基于小样本学习框架的余弦角度原型损失的组合损失函数,解决了分类损失函数与说话人识别实际评测需求不匹配和度量函数对采样策略依赖性强的问题.实验结果显示,与基准模型相比,性能指标等误率(EER)降低12.45%,最小检测代价函数(minDCF)降低14.09%,取得现有说话人识别领域的优异效果。 展开更多
关键词 说话人识别 重加权 特征增强层 分类损失函数 度量损失函数
在线阅读 下载PDF
基于YOLOv4算法的集装箱破损检测方法 被引量:3
4
作者 马林 朱昌明 周日贵 《上海海事大学学报》 北大核心 2021年第4期114-118,共5页
针对港口集装箱破损检测的算法较少,并且存在检测速度慢、检测精度低的问题,本文提出一种基于改进的YOLOv4卷积神经网络的集装箱破损检测方法。通过改进的K均值聚类算法获取集装箱数据集的锚点框,结合焦点分类损失函数,减少易分类样本... 针对港口集装箱破损检测的算法较少,并且存在检测速度慢、检测精度低的问题,本文提出一种基于改进的YOLOv4卷积神经网络的集装箱破损检测方法。通过改进的K均值聚类算法获取集装箱数据集的锚点框,结合焦点分类损失函数,减少易分类样本的损失;引入α平衡因子调节正负样本的不均衡,使检测结果更加精确。实验结果表明,改进后的YOLOv4算法比目前流行的算法在明显破损检测及小目标破损检测上具有更好的效果,且不会明显增加检测时间,在集装箱破损检测等方面具有较高的实用价值。 展开更多
关键词 港口应用 YOLOv4 K均值聚类 焦点分类损失函数 破损检测
在线阅读 下载PDF
基于改进YOLOv7的复杂环境下红花采摘识别 被引量:45
5
作者 王小荣 许燕 +1 位作者 周建平 陈金荣 《农业工程学报》 EI CAS CSCD 北大核心 2023年第6期169-176,共8页
针对光照、遮挡、密集以及样本数量不均衡等复杂环境造成红花机械化采摘识别不准问题,该研究提出一种基于YOLOv7的改进模型,制作红花样本数据集建立真实采摘的复杂环境数据,增加Swin Transformer注意力机制提高模型对各分类样本的检测... 针对光照、遮挡、密集以及样本数量不均衡等复杂环境造成红花机械化采摘识别不准问题,该研究提出一种基于YOLOv7的改进模型,制作红花样本数据集建立真实采摘的复杂环境数据,增加Swin Transformer注意力机制提高模型对各分类样本的检测精准率,改进Focal Loss损失函数提升多分类任务下不均衡样本的识别率。经试验,改进后的模型各类别样本的检测平均准确率达到88.5%,与改进前相比提高了7个百分点,不均衡类别样本平均精度提高了15.9个百分点,与其他模型相比,检测平均准确率与检测速度均大幅提升。改进后的模型可以准确地实现对红花的检测,模型参数量小,识别速度快,适合在红花采摘机械上进行迁移部署,可为红花机械化实时采摘研究提供技术支持。 展开更多
关键词 图像识别 图像处理 复杂环境 YOLOv7 注意力机制 分类Focal Loss损失函数 红花采摘
在线阅读 下载PDF
一种改进型YOLOv4输电线路防外破检测方法 被引量:11
6
作者 董卓元 高永亮 +6 位作者 袁斌 姚新宇 张军强 曾健 邸宏宇 赵泽宇 周鹏杰 《电网与清洁能源》 CSCD 北大核心 2023年第6期17-25,共9页
输电线路场景图像易受野外多种环境干扰,当前主流的深度学习网络模型难于满足输电线路防外破检测模型的边缘部署实时性和精度要求。该文提出了一种融合残差学习的YOLOv4输电线路防外破检测方法。首先采用数据增强技术对所采集的输电线... 输电线路场景图像易受野外多种环境干扰,当前主流的深度学习网络模型难于满足输电线路防外破检测模型的边缘部署实时性和精度要求。该文提出了一种融合残差学习的YOLOv4输电线路防外破检测方法。首先采用数据增强技术对所采集的输电线路图像数据集增强,建立了输电线路防外力破坏的图像数据集。其次,考虑到输电线路网络模型便于实际边缘部署配置的需要,对YOLOv4网络结构进行了改进,基于ResNet50构建特征提取主干网络。最后引入标签平滑技术对YOLOv4的分类损失函数进行了优化以减缓过拟合问题,提高了网络模型的检测精度。用实际采集的输电线路图像构成的数据集进行了测试,实验结果表明该文所提出的方法在运算速度和检测准确度上均优于其他方法。 展开更多
关键词 输电线路 防外破检测 深度学习 残差结构 分类损失函数
在线阅读 下载PDF
基于卷积神经网络特征重加权的行人再辨识 被引量:4
7
作者 王琳琳 梁凤梅 刘阿建 《小型微型计算机系统》 CSCD 北大核心 2019年第4期834-838,共5页
对于开集测试协议行人再辨识问题的研究,我们希望在某种距离度量目标函数的优化下,使学习到的行人特征满足类内最大距离越来越小,同时类间最小距离越来越大.然而,目前所存在的算法行人特征的判别性较低.本文将基于siamese模型的卷积神... 对于开集测试协议行人再辨识问题的研究,我们希望在某种距离度量目标函数的优化下,使学习到的行人特征满足类内最大距离越来越小,同时类间最小距离越来越大.然而,目前所存在的算法行人特征的判别性较低.本文将基于siamese模型的卷积神经网络用于行人再辨识的研究,该网络在分类与验证损失函数的联合监督下,可以学习出更具判别性的行人特征.其中,分类损失函数使学习到的行人特征具备分辨性,而验证损失函数的作用是在拉大类间特征距离的同时减小类内特征间的距离,使学习到的行人特征具备辨别性.除此之外,我们在验证损失函数之前设计一个特征重加权层.该层将特征维度的尺度与相关性考虑进去对每一维进行重新加权,且权值矩阵在网络训练过程中自动更新.同时,我们为该层的权值矩阵施加一个约束,以提高行人特征的泛化能力.最后在几个行人再辨识数据集上的实验表明我们模型与特征重加权层的优越性. 展开更多
关键词 关行人再辨识 深度学习 特征重加权 分类损失函数 验证损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部