期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于遗传算法的多分类器融合模型在信用评估中的应用 被引量:7
1
作者 叶强 张洁 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第9期1504-1505,1536,共3页
为探讨基于遗传算法的多分类器融合模型,并基于多分类器融合技术,建立新的客户信用分类模型,该模型通过使用分类融合器,将多个单分类器得到的客户信用评估结果进行合并,从而综合不同分类器的局部优势,提高分类性能.采用线性分类融合器,... 为探讨基于遗传算法的多分类器融合模型,并基于多分类器融合技术,建立新的客户信用分类模型,该模型通过使用分类融合器,将多个单分类器得到的客户信用评估结果进行合并,从而综合不同分类器的局部优势,提高分类性能.采用线性分类融合器,并通过遗传算法对分类融合器进行优化.实验表明,该方法在客户信用评估中的效果明显优于传统的运用单个分类器的方法. 展开更多
关键词 分类器融合模型 遗传算法 信用评估
在线阅读 下载PDF
多贝叶斯网络分类器集成模型研究
2
作者 李玉玲 程云志 《微电子学与计算机》 CSCD 北大核心 2008年第2期54-57,61,共5页
提出了一种多贝叶斯网络集成的分类和预测方法。把专家知识作为"疫苗",利用免疫遗传算法和约束信息熵适应度函数相结合的方法进行贝叶斯网络结构的学习,得到多个反映同一样本数据集的、网络结构复杂度折衷的、满意的贝叶斯网... 提出了一种多贝叶斯网络集成的分类和预测方法。把专家知识作为"疫苗",利用免疫遗传算法和约束信息熵适应度函数相结合的方法进行贝叶斯网络结构的学习,得到多个反映同一样本数据集的、网络结构复杂度折衷的、满意的贝叶斯网络结构。然后,给出了多贝叶斯网络分类器集成模型,把学习得到的贝叶斯网络进行集成,代表"专家"对未知类别的不完全数据进行群决策的分类和预测,提升贝叶斯网络分类器的泛化能力。最后,结合贝叶斯推理工具GeNIe软件,通过实例说明该方法的合理性和有效性。 展开更多
关键词 贝叶斯网络 分类器集成模型 结构学习 约束信息熵 免疫遗传算法
在线阅读 下载PDF
多模型语音识别算法在智能客服程序中的应用
3
作者 于梦吟 方坤玉 +2 位作者 孙昕 陈素婷 董梁 《中国高新科技》 2024年第15期28-30,共3页
文章介绍了一种多模型语音识别算法,为待识别的每一个类属训练了包含多个隐马尔可夫模型(HMM)的识别器,每个HMM在训练时会逐步适合未能正确识别的类属样本,得到的新模型对这些样本的识别能力渐次提高,最终合成得到的多模型识别器可以更... 文章介绍了一种多模型语音识别算法,为待识别的每一个类属训练了包含多个隐马尔可夫模型(HMM)的识别器,每个HMM在训练时会逐步适合未能正确识别的类属样本,得到的新模型对这些样本的识别能力渐次提高,最终合成得到的多模型识别器可以更好地识别分布较为分散的序列样本。这一算法被应用在一款智能客服程序中,对具有不同方言特征的问询短语、短句进行识别。实验结果表明,多模型语音识别算法在多方言、小词汇量语音识别任务中的表现优于单模型识别器和一些常用的语音识别接口。 展开更多
关键词 模型分类器 隐马尔可夫模型 语音识别 智能客服程序
在线阅读 下载PDF
改进的Adaboost方法及其在水电站设备故障检测中的应用 被引量:3
4
作者 陈涛 张华飞 +3 位作者 衣传宝 孙成勋 高阳 徐华雷 《水力发电》 北大核心 2018年第3期62-65,共4页
针对水电站运行人员巡检时间过长,检查设备故障效率过低等问题,设计了水电站故障检测方案。根据改进的Adaboost方法对不同工况下机器作用所产生的噪声值进行训练,并建立一个分类器模型,将其应用到水电站设备故障检测方案当中。通过仿真... 针对水电站运行人员巡检时间过长,检查设备故障效率过低等问题,设计了水电站故障检测方案。根据改进的Adaboost方法对不同工况下机器作用所产生的噪声值进行训练,并建立一个分类器模型,将其应用到水电站设备故障检测方案当中。通过仿真实验,结果表明改进的Adaboost分类器正确率很高,达到89.1%。此方案可以提高水电站设备故障的检测效率,加强了工作人员的安全保障。 展开更多
关键词 故障检测 ADABOOST 熵权法 分类器模型
在线阅读 下载PDF
Internet Multimedia Traffic Classification from QoS Perspective Using Semi-Supervised Dictionary Learning Models 被引量:3
5
作者 Zaijian Wang Yuning Dong +1 位作者 Shiwen Mao Xinheng Wang 《China Communications》 SCIE CSCD 2017年第10期202-218,共17页
To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modi... To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method. 展开更多
关键词 dictionary learning traffic classication multimedia traffic K-singular value decomposition quality of service
在线阅读 下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
6
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
在线阅读 下载PDF
Hierarchical Semantic-Category-Tree Model for Chinese-English Machine Translation 被引量:1
7
作者 Zhu Xiaojian Jin Yaohong 《China Communications》 SCIE CSCD 2012年第12期80-92,共13页
We introduce a novel Sermntic-Category- Tree (SCT) model to present the sen-antic structure of a sentence for Chinese-English Machine Translation (MT). We use the SCT model to handle the reordering in a hierarchic... We introduce a novel Sermntic-Category- Tree (SCT) model to present the sen-antic structure of a sentence for Chinese-English Machine Translation (MT). We use the SCT model to handle the reordering in a hierarchical structure in which one reordering is dependent on the others. Different from other reordering approaches, we handle the reordering at three levels: sentence level, chunk level, and word level. The chunk-level reordering is dependent on the sentence-level reordering, and the word-level reordering is dependent on the chunk-level reordering. In this paper, we formally describe the SCT model and discuss the translation strategy based on the SCT model. Further, we present an algorithm for analyzing the source language in SCT and transforming the source SCT into the target SCT. We apply the SCT model to a role-based patent text MT to evaluate the ability of the SCT model. The experimental results show that SCT is efficient in handling the hierarehical reordering operation in MT. 展开更多
关键词 REORDERING SCT MT function word
在线阅读 下载PDF
Social Network Information Propagation Model Based on Individual Behavior 被引量:9
8
作者 Lejun Zhang Hongjie Li +1 位作者 Chunhui Zhao Xiaoying Lei 《China Communications》 SCIE CSCD 2017年第7期78-92,共15页
In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behav... In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring. 展开更多
关键词 social network information propagation individual behavior propagation delay
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部