提出了一种基于核主成分分析(kernel principal component analysis,简称KPCA)和拉普拉斯正则化最小二乘(Laplacian regularized least squares,简称LapRLS)的合成孔径雷达(synthetic aperture radar,简称SAR)目标识别方法.KPCA特征提...提出了一种基于核主成分分析(kernel principal component analysis,简称KPCA)和拉普拉斯正则化最小二乘(Laplacian regularized least squares,简称LapRLS)的合成孔径雷达(synthetic aperture radar,简称SAR)目标识别方法.KPCA特征提取方法不仅能够提取目标主要特征,而且有效地降低了特征维数.Laplacian正则化最小二乘分类是一种半监督学习方法,将训练集样本作为有标识样本,测试集样本作为无标识样本,在学习过程中将测试集样本包含进来以获得更高的识别率.在MSTAR实测SAR地面目标数据上进行实验,结果表明,该方法具有较高的识别率,并对目标角度间隔具有鲁棒性.与模板匹配法、支撑矢量机以及正则化最小二乘监督学习方法相比,具有更高的SAR目标识别正确率.此外,还通过实验分析了不同情况下有标识样本数目对目标识别性能的影响.展开更多
Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature ...Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature only demonstrated the optimality of group testing strategy while estimating prevalence under some strong assumptions.This article weakens the assumption of misclassification rate in the previous literature,considers the misclassification rate of the infected samples as a differentiable function of the pool size,and explores some optimal properties of group testing for estimating prevalence in the presence of differential misclassification conforming to this assumption.This article theoretically demonstrates that the group testing strategy performs better than the sample by sample procedure in estimating disease prevalence when the total number of sample pools is given or the size of the test population is determined.Numerical simulation experiments were conducted to evaluate the performance of group tests in estimating prevalence in the presence of dilution effect.展开更多
文摘提出了一种基于核主成分分析(kernel principal component analysis,简称KPCA)和拉普拉斯正则化最小二乘(Laplacian regularized least squares,简称LapRLS)的合成孔径雷达(synthetic aperture radar,简称SAR)目标识别方法.KPCA特征提取方法不仅能够提取目标主要特征,而且有效地降低了特征维数.Laplacian正则化最小二乘分类是一种半监督学习方法,将训练集样本作为有标识样本,测试集样本作为无标识样本,在学习过程中将测试集样本包含进来以获得更高的识别率.在MSTAR实测SAR地面目标数据上进行实验,结果表明,该方法具有较高的识别率,并对目标角度间隔具有鲁棒性.与模板匹配法、支撑矢量机以及正则化最小二乘监督学习方法相比,具有更高的SAR目标识别正确率.此外,还通过实验分析了不同情况下有标识样本数目对目标识别性能的影响.
基金supported by the National Natural Science Foundation of China(Grant No.72091212).
文摘Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature only demonstrated the optimality of group testing strategy while estimating prevalence under some strong assumptions.This article weakens the assumption of misclassification rate in the previous literature,considers the misclassification rate of the infected samples as a differentiable function of the pool size,and explores some optimal properties of group testing for estimating prevalence in the presence of differential misclassification conforming to this assumption.This article theoretically demonstrates that the group testing strategy performs better than the sample by sample procedure in estimating disease prevalence when the total number of sample pools is given or the size of the test population is determined.Numerical simulation experiments were conducted to evaluate the performance of group tests in estimating prevalence in the presence of dilution effect.