期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多技术融合加权平滑的径向基函数神经网络熔融指数预报
被引量:
1
1
作者
陈红梅
刘兴高
《计算机应用》
CSCD
北大核心
2015年第A01期104-109,共6页
针对在对聚丙烯熔融指数进行预测时优势数据和优势变量不突出影响预测精度、数据平滑度不够影响泛化性能的问题,提出了基于多技术融合加权平滑的径向基函数神经网络预报模型。综合运用了在时间尺度基于空间欧氏距离加权、在变量维度上...
针对在对聚丙烯熔融指数进行预测时优势数据和优势变量不突出影响预测精度、数据平滑度不够影响泛化性能的问题,提出了基于多技术融合加权平滑的径向基函数神经网络预报模型。综合运用了在时间尺度基于空间欧氏距离加权、在变量维度上基于灰色关联和线性回归误差加权两种数据加权方案,基于过程变量差分序列欧氏距离的平滑和局部线性平滑两种数据平滑方案,解决了模型精度和泛化性低的问题。为进一步改进模型性能,采用带误差补偿的非线性自回归滑动平均模型框架和径向基函数神经网络,利用自校正预测控制算法和分段线性变学习率算法,对模型进行优化。结合某厂真实数据对模型进行验证,预报结果在泛化集上为:平均相对误差(MRE)1.32%、均方根误差(RMSE)0.045 9。与其他方法进行了详细的比较分析,结果表明该模型具有良好的预报精度和泛化性能,在大时滞工业过程领域具有一定的应用价值。
展开更多
关键词
多技术融合
加权
平滑
自校正预测控制
分段线性变学习率
径向基函数神经网络
在线阅读
下载PDF
职称材料
题名
基于多技术融合加权平滑的径向基函数神经网络熔融指数预报
被引量:
1
1
作者
陈红梅
刘兴高
机构
潍坊学院机电与车辆工程学院
工业控制技术国家重点实验室(浙江大学)
出处
《计算机应用》
CSCD
北大核心
2015年第A01期104-109,共6页
基金
国家自然科学基金资助项目(U1162130)
山东省高等学校青年骨干教师国内访问学者项目
文摘
针对在对聚丙烯熔融指数进行预测时优势数据和优势变量不突出影响预测精度、数据平滑度不够影响泛化性能的问题,提出了基于多技术融合加权平滑的径向基函数神经网络预报模型。综合运用了在时间尺度基于空间欧氏距离加权、在变量维度上基于灰色关联和线性回归误差加权两种数据加权方案,基于过程变量差分序列欧氏距离的平滑和局部线性平滑两种数据平滑方案,解决了模型精度和泛化性低的问题。为进一步改进模型性能,采用带误差补偿的非线性自回归滑动平均模型框架和径向基函数神经网络,利用自校正预测控制算法和分段线性变学习率算法,对模型进行优化。结合某厂真实数据对模型进行验证,预报结果在泛化集上为:平均相对误差(MRE)1.32%、均方根误差(RMSE)0.045 9。与其他方法进行了详细的比较分析,结果表明该模型具有良好的预报精度和泛化性能,在大时滞工业过程领域具有一定的应用价值。
关键词
多技术融合
加权
平滑
自校正预测控制
分段线性变学习率
径向基函数神经网络
Keywords
multi-technology integration
weighting
smoothing
self-tuning predictive control
piecewise-linear variablelearning rate
Radial Basis Function Neural Network (RBFNN)
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多技术融合加权平滑的径向基函数神经网络熔融指数预报
陈红梅
刘兴高
《计算机应用》
CSCD
北大核心
2015
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部