期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于XGBoost-GRNN算法的分段式风功率预测
1
作者
李进友
李媛
+2 位作者
黄露秋
王海鑫
李超然
《计算机集成制造系统》
北大核心
2025年第10期3831-3845,共15页
针对风电大数据背景下风电机组功率预测准确性、预测功率曲线契合率低等问题,提出一种基于XGBoost-GRNN的风功率预测算法,建立考虑分段式风电数据的风电机组功率预测模型。首先,提出基于风电机组运行状态特征、风速分布模型的SCADA数据...
针对风电大数据背景下风电机组功率预测准确性、预测功率曲线契合率低等问题,提出一种基于XGBoost-GRNN的风功率预测算法,建立考虑分段式风电数据的风电机组功率预测模型。首先,提出基于风电机组运行状态特征、风速分布模型的SCADA数据分段划分方法,并基于数据多维度分析构建功率关联指标架构。其次,提出一种基于改进极端梯度提升(XGBoost)变量的广义神经网络(GRNN)联合风电机组分段式功率预测算法,以获取准确性较高、误差较小的功率预测值。进一步,基于预测偏差、曲线契合率等指标评估所提预测模型的预测性能。最后,以内蒙古塞罕坝风电场20台风电机组为例进行实验分析,结果表明:与传统预测方法相比,所提方法R^(2)均值至少提高了0.0101;与全段数据预测相比,分段式预测R^(2)提高了0.0084。所提模型预测曲线契合率为0.9184,相比其余4种模型预测曲线契合率至少提高了0.036。
展开更多
关键词
风电大数据
风电机组
极端梯度提升
广义神经网络
分段式功率预测算法
在线阅读
下载PDF
职称材料
题名
基于XGBoost-GRNN算法的分段式风功率预测
1
作者
李进友
李媛
黄露秋
王海鑫
李超然
机构
广西民族师范学院数理与电子信息工程学院
沈阳工业大学理学院
沈阳工业大学电气工程学院
国家电投集团内蒙古新能源有限公司
出处
《计算机集成制造系统》
北大核心
2025年第10期3831-3845,共15页
基金
广西高校中青年教师科研基础能力提升资助项目(2023KY0792)
广西民族师范学院科研项目资助项目(2024YB123)。
文摘
针对风电大数据背景下风电机组功率预测准确性、预测功率曲线契合率低等问题,提出一种基于XGBoost-GRNN的风功率预测算法,建立考虑分段式风电数据的风电机组功率预测模型。首先,提出基于风电机组运行状态特征、风速分布模型的SCADA数据分段划分方法,并基于数据多维度分析构建功率关联指标架构。其次,提出一种基于改进极端梯度提升(XGBoost)变量的广义神经网络(GRNN)联合风电机组分段式功率预测算法,以获取准确性较高、误差较小的功率预测值。进一步,基于预测偏差、曲线契合率等指标评估所提预测模型的预测性能。最后,以内蒙古塞罕坝风电场20台风电机组为例进行实验分析,结果表明:与传统预测方法相比,所提方法R^(2)均值至少提高了0.0101;与全段数据预测相比,分段式预测R^(2)提高了0.0084。所提模型预测曲线契合率为0.9184,相比其余4种模型预测曲线契合率至少提高了0.036。
关键词
风电大数据
风电机组
极端梯度提升
广义神经网络
分段式功率预测算法
Keywords
big data of wind power
wind turbines
extreme gradient boosting
general regression neural network
piecewise power prediction algorithm
分类号
TM614 [电气工程—电力系统及自动化]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于XGBoost-GRNN算法的分段式风功率预测
李进友
李媛
黄露秋
王海鑫
李超然
《计算机集成制造系统》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部