针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与...针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与信息交互运行机制,以危险避障和数据采集为约束函数,考虑了UAV在加速、减速、匀速、转角等飞行条件下的能耗差异,并以能耗最低和时间最短为目标函数构造UAV盘库作业数学模型;然后,设计了差分迁移-分段变异生物地理学优化(differential migration-piecewise mutation-biogeography-based optimization, DPBBO)算法对上述模型进行优化解算;最后,进行了仿真实验验证。结果表明:DPBBO算法对解决该盘库作业问题的效果较优,可以提升库存抽检任务的时效性和库存管理的准确性。展开更多
In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scena...In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.展开更多
基金Project(61273138) supported by the National Natural Science Foundation of ChinaProjects(KJ2016A169,KJ2015A242) supported by the University Natural Science Research Key Project of Anhui Province,ChinaProject(ZRC2014444) supported by the Talents Program of Anhui Science and Technology University,China
文摘In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.