期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取 被引量:5
1
作者 赵宇博 张丽萍 +2 位作者 闫盛 侯敏 高茂 《计算机应用》 CSCD 北大核心 2024年第8期2421-2429,共9页
关系抽取是梳理学科知识的重要手段以及构建教育知识图谱的重要步骤。在当前研究中,如BERT(Bidirectional Encoder Representations from Transformers)等以Transformer架构为基础的预训练语言模型多数存在参数量大、复杂度过高的问题,... 关系抽取是梳理学科知识的重要手段以及构建教育知识图谱的重要步骤。在当前研究中,如BERT(Bidirectional Encoder Representations from Transformers)等以Transformer架构为基础的预训练语言模型多数存在参数量大、复杂度过高的问题,难以部署于终端设备,限制了在真实教育场景中的应用。此外,大多数传统的轻量级关系抽取模型并不是通过文本结构对数据进行建模,容易忽略实体间的结构信息;且生成的词嵌入向量难以捕捉文本的上下文特征、对一词多义问题解决能力差,难以契合学科知识文本非结构化以及专有名词占比大的特点,不利于高质量的关系抽取。针对上述问题,提出一种基于改进分段卷积神经网络(PCNN)和知识蒸馏(KD)的学科知识实体间关系抽取方法。首先,利用BERT生成高质量的领域文本词向量,改进PCNN模型的输入层,从而有效捕捉文本上下文特征并在一定程度上解决一词多义问题;其次,利用卷积和分段最大池化操作深入挖掘实体间结构信息,构建BERTPCNN模型,实现高质量的关系抽取;最后,考虑到教育场景对高效且轻量化模型的需求,蒸馏BERT-PCNN模型输出层和中间层知识,用于指导PCNN模型,完成KD-PCNN模型的构建。实验结果表明,BERT-PCNN模型的加权平均F1值达到94%,相较于R-BERT和EC_BERT模型分别提升了1和2个百分点;KD-PCNN模型的加权平均F1值达到92%,与EC_BERT模型持平;参数量相较于BERT-PCNN、KD-RB-l模型下降了3个数量级。可见,所提方法能在性能评价指标和网络参数量之间更好地权衡,有利于教育知识图谱自动化构建水平的提高和新型教育应用的研发与部署。 展开更多
关键词 关系抽取 分段卷积神经网络 知识蒸馏 知识图谱 学科知识 神经网络
在线阅读 下载PDF
基于混合神经网络的实体关系抽取方法研究 被引量:8
2
作者 葛艳 杜坤钰 +1 位作者 杜军威 陈卓 《中文信息学报》 CSCD 北大核心 2021年第10期81-89,共9页
实体关系抽取是信息抽取领域的重要研究内容,对知识库的自动构建起着至关重要的作用。针对非结构化文本实体关系抽取存在上下文环境信息难以准确表征,致使现有抽取模型准确率不能满足实际应用需求的问题,该文提出了一种新型的实体关系... 实体关系抽取是信息抽取领域的重要研究内容,对知识库的自动构建起着至关重要的作用。针对非结构化文本实体关系抽取存在上下文环境信息难以准确表征,致使现有抽取模型准确率不能满足实际应用需求的问题,该文提出了一种新型的实体关系抽取模型BiGRU-Att-PCNN。该模型是基于混合神经网络,首先,构建双向门控循环单元(BiGRU)以更好地获取文本序列中的上下文语序的相关信息;然后,采用注意力(Attention)机制来达到自动关注对关系影响力高的序列特征的目的;最后,通过采用分段卷积神经网络(PCNN),从调整后的序列中较好地学习到了相关的环境特征信息来进行关系抽取。该模型在公开的英文数据集SemEval 2010 Task 8上取得了86.71%的F_(1)值,实验表明,该方法表现出了较好的性能,为信息抽取领域实体关系的自动获取提供了新的方法支持。 展开更多
关键词 实体关系抽取 双向门控循环单元 注意力机制 分段卷积神经网络
在线阅读 下载PDF
面向机载机电产品参数溯源的关系抽取方法
3
作者 杨明烨 张栋 +3 位作者 孔盛杰 李泷杲 何旋 候国义 《机电工程》 北大核心 2025年第6期1143-1156,共14页
机载机电产品是保障飞机飞行功能的核心部件,其参数溯源的准确性对于确保飞机的运行效率、安全性和维护成本至关重要。针对机载机电产品参数溯源关系复杂、上下文信息跨度较大等问题,提出了一种面向机载机电产品参数溯源的关系抽取方法... 机载机电产品是保障飞机飞行功能的核心部件,其参数溯源的准确性对于确保飞机的运行效率、安全性和维护成本至关重要。针对机载机电产品参数溯源关系复杂、上下文信息跨度较大等问题,提出了一种面向机载机电产品参数溯源的关系抽取方法。首先,构建了机载机电产品的本体模型,为组织机载机电产品信息提供了结构化框架,并对参数溯源文件进行了标注,形成了用于关系抽取的领域数据集;然后,设计了一种基于分段卷积神经网络(PCNN)和多头注意力机制(MA)的关系抽取模型(RE),该RE-PCNN-MA模型引入分段池化策略增强了对复杂溯源关系的学习能力,并利用多头注意力有效捕捉了实体之间的长距离依赖关系,克服了现有关系抽取模型在处理扩展上下文信息方面的局限性;最后,基于提取的关系与实体,构建了机载机电产品参数溯源知识图谱,为机载机电产品的溯源检索与决策优化提供了有力支撑。研究结果表明:RE-PCNN-MA模型在机载机电产品数据集上的验证结果表现优异,其精确率为97.14%;相比其他基线模型,该模型的精确率提升了3.52%~8.14%。RE-PCNN-MA模型在性能上显著优于其他基线模型,能够高效且准确地提取机载机电产品实体之间的关系。 展开更多
关键词 机载机电产品知识图谱 产品溯源 关系抽取模型 分段卷积神经网络 多头注意力机制
在线阅读 下载PDF
基于实体知识的远程监督关系抽取
4
作者 马长林 孙状 《计算机工程与科学》 CSCD 北大核心 2024年第5期945-950,共6页
为了降低远程监督关系抽取标记数据的噪声,提出一种融合实体描述和自注意力机制的远程监督关系提取模型,模型基于多示例学习,考虑到实体知识和位置关系的综合作用,采用词、实体、实体描述和相对位置的拼接向量作为模型输入,将分段卷积... 为了降低远程监督关系抽取标记数据的噪声,提出一种融合实体描述和自注意力机制的远程监督关系提取模型,模型基于多示例学习,考虑到实体知识和位置关系的综合作用,采用词、实体、实体描述和相对位置的拼接向量作为模型输入,将分段卷积神经网络作为句子编码器,结合改进的结构化自注意力机制,捕捉特征内部相关性,并构造头实体和尾实体的差向量作为注意力机制的监督信息,为句子分配权重。在纽约时报数据集上的实验结果表明,与已有模型相比,本文模型的性能指标均达到最大值。 展开更多
关键词 关系抽取 实体 实体描述 分段卷积神经网络 自注意力机制
在线阅读 下载PDF
基于并行混合网络的生鲜水果短文本情感分类 被引量:1
5
作者 潘梦强 董微 张青川 《科学技术与工程》 北大核心 2022年第10期4055-4062,共8页
为了提升生鲜水果领域短文本情感分类的准确率,提出了一种并行混合网络的情感分类模型。针对食品领域出现较多的一词多义现象,采用双向编码器表征模型(bidirectional encoder representations from transformers,BERT)来提供词的向量化... 为了提升生鲜水果领域短文本情感分类的准确率,提出了一种并行混合网络的情感分类模型。针对食品领域出现较多的一词多义现象,采用双向编码器表征模型(bidirectional encoder representations from transformers,BERT)来提供词的向量化表示;针对生鲜食品评论特殊的结构,采用分段池化卷积神经网络(piecewise convolutional neural network,PCNN)与双向门控循环单元(bidirectional gated recurrent unit,BiGRU)并行的模型来对文本序列进行特征的提取,最终使用Sigmoid来进行情感分类。为保证实验的公允,在公开数据集上进行实验。结果表明,本文模型准确率达到了94.25%和85.88%。同时发现当PCNN选取合适的分段数之后,也能达到一个较好的效果,其准确率,召回率,F_(1)均高于复杂度更高的BiGRU模型。提出的模型在生鲜水果短文本的情感分类中表现良好,但是对于其他的生鲜食品表现未知。 展开更多
关键词 情感分析 分段池化卷积神经网络 BERT模型 双向门控循环单元 在线评论
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部