期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
有限区间上的分数阶扩散-波方程定解问题与Laplace变换 被引量:9
1
作者 段俊生 徐明瑜 《高校应用数学学报(A辑)》 CSCD 北大核心 2004年第2期165-171,共7页
求解了如下的分数阶扩散-波方程定解问题0Dαtu=2ux2,0<x<1,t>0,0<α≤2,u(0,t;α)=0,u(1,t;α)=θ(t),u(x,0+;α)=0,当1<α≤2时,还有ut(x,0+;α)=0.其中θ(t)是Heaviside单位阶跃函数,0Dαt为关于时间t的α阶Caput... 求解了如下的分数阶扩散-波方程定解问题0Dαtu=2ux2,0<x<1,t>0,0<α≤2,u(0,t;α)=0,u(1,t;α)=θ(t),u(x,0+;α)=0,当1<α≤2时,还有ut(x,0+;α)=0.其中θ(t)是Heaviside单位阶跃函数,0Dαt为关于时间t的α阶Caputo分数阶导数算子,u=u(x,t;α)为时间t的因果函数(即t<0时恒为零的函数).利用Laplace变换的复围道积分反演和离散化反演及FoxH函数理论,给出在计算上对大的t和小的t分别适用的解的表达式. 展开更多
关键词 CAPUTO分数导数 LAPLACE变换 FOX H函数 分数阶扩散-波方程
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部