期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于再生核和有限差分法求解变系数时间分数阶对流扩散方程 被引量:1
1
作者 吕学琴 何松岩 王世宇 《数学物理学报(A辑)》 北大核心 2025年第1期153-164,共12页
针对变系数的时间分数阶对流-扩散方程,首先,使用有限差分法,得到了该方程的半离散格式.之后再利用再生核方法,得到了方程的精确解u(x,t_(n)),将精确解u(x,t_(n))取m项截断,可得到近似解u_(m)(x,t_(n)).通过证明,得到该方法是稳定的.最... 针对变系数的时间分数阶对流-扩散方程,首先,使用有限差分法,得到了该方程的半离散格式.之后再利用再生核方法,得到了方程的精确解u(x,t_(n)),将精确解u(x,t_(n))取m项截断,可得到近似解u_(m)(x,t_(n)).通过证明,得到该方法是稳定的.最后,通过三个数值例子,并与其他文献中的方法在同等条件下进行了比较,证明该算法有效. 展开更多
关键词 CAPUTO分数导数 再生核方法 变系数时间分数阶对流扩散方程 有限差分方法
在线阅读 下载PDF
多项时间分数阶对流扩散方程的一类显-隐和隐-显差分格式 被引量:3
2
作者 秦潇 吕蓬 杨晓忠 《高校应用数学学报(A辑)》 北大核心 2022年第2期151-164,共14页
多项时间分数阶对流扩散方程在地下水运输,热传导,空气污染等领域有着广泛的应用,其数值方法的研究具有重要的科学意义和应用价值.针对多项时间分数阶对流扩散方程,基于经典的显式和隐式格式,文中构造一类显式-隐式(E-I)差分格式和隐式... 多项时间分数阶对流扩散方程在地下水运输,热传导,空气污染等领域有着广泛的应用,其数值方法的研究具有重要的科学意义和应用价值.针对多项时间分数阶对流扩散方程,基于经典的显式和隐式格式,文中构造一类显式-隐式(E-I)差分格式和隐式-显式(I-E)差分格式,利用傅里叶方法证明了这类格式的无条件稳定性和O(τ^(2-α)+h^(2))(α=max{α0,α1,…,αm})阶收敛性.数值试验表明,E-I和I-E差分格式具有省时性,计算效率高于经典的隐式格式.同样,E-I和I-E差分格式适用于求解具有初始奇性的多项时间分数阶对流扩散问题,格式的收敛阶为O(τ^(2-α)+h^(2)).证实E-I和I-E差分格式求解多项时间分数阶对流扩散方程是高效的. 展开更多
关键词 多项时间分数阶对流扩散方程 E-I格式和I-E格式 无条件稳定性 收敛性 数值试验
在线阅读 下载PDF
变系数分数阶对流扩散方程的一种算子矩阵方法 被引量:2
3
作者 朱晓钢 聂玉峰 《应用数学和力学》 CSCD 北大核心 2018年第1期104-112,共9页
研究带Caputo分数阶导数的变系数对流扩散方程的数值解法.基于Chebyshev cardinal函数,推导Riemann-Liouville分数阶积分的一个有效算子矩阵,以之为基础,提出了变系数分数阶对流扩散方程的一种新的算子矩阵法.该方法将方程的求解转化成... 研究带Caputo分数阶导数的变系数对流扩散方程的数值解法.基于Chebyshev cardinal函数,推导Riemann-Liouville分数阶积分的一个有效算子矩阵,以之为基础,提出了变系数分数阶对流扩散方程的一种新的算子矩阵法.该方法将方程的求解转化成矩阵的代数运算,具有计算量小和易于编程等特点.给出数值算例并与一些现有的方法进行比较,结果表明该方法是收敛的且在计算精度上占有优势. 展开更多
关键词 分数微积分 CHEBYSHEV cardinal函数 分数阶对流扩散方程 算子矩阵方法
在线阅读 下载PDF
时空分数阶对流扩散方程的两种有限差分格式的比较(英文)
4
作者 周文格 阿布都热西提.阿布都外力 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期545-551,共7页
提出了求解有限区域上的一维时空分数阶变系数对流扩散方程的两种隐式有限差分格式,就格式的精度和收敛阶比较这两种差分格式的优劣.当使用Caputo分数阶导数对a阶时间导数项进行离散时,在两个不同的点上分别采用中心差分,而对β阶空间... 提出了求解有限区域上的一维时空分数阶变系数对流扩散方程的两种隐式有限差分格式,就格式的精度和收敛阶比较这两种差分格式的优劣.当使用Caputo分数阶导数对a阶时间导数项进行离散时,在两个不同的点上分别采用中心差分,而对β阶空间导数项均使用转化的Grünwald公式进行离散.对得到的两种格式进行稳定性和收敛性分析.用几个已知精确解的数值例子验证和比较这两种有限差分格式的精确性和有效性. 展开更多
关键词 时空分数阶对流扩散方程 有限差分 转化的Grünwald公式 稳定性 收敛性
在线阅读 下载PDF
分数阶对流扩散方程的半加权有限差分格式(英文)
5
作者 朱琳 芮洪兴 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期18-29,35,共13页
对于空间分数阶对流扩散方程的初边值问题提出了一系列半加权差分格式.可以证明此格式当分数阶导数属于[((17)^(1/2)-1)/2,2]时无条件稳定,且二阶收敛.最后给出数值算例验证了理论证明.
关键词 半加权有限差分格式 分数阶对流扩散方程 无条件稳定
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部