期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于BiViTNet的轻量级驾驶员分心行为检测方法 被引量:1
1
作者 高尚兵 张莹莹 +2 位作者 王腾 张秦涛 刘宇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期57-64,共8页
针对基于卷积神经网络的驾驶员分心行为检测,模型比较复杂、检测效率低下且缺少全局视觉表征的问题,提出了一种双分支并行双向交互神经网络BiViTNet(bidirectional interaction neural network based on vision transformer)对驾驶员行... 针对基于卷积神经网络的驾驶员分心行为检测,模型比较复杂、检测效率低下且缺少全局视觉表征的问题,提出了一种双分支并行双向交互神经网络BiViTNet(bidirectional interaction neural network based on vision transformer)对驾驶员行为进行识别,将ViT(vision transformer)引入到网络中对全局信息进行编码,在一定程度上提高检测精度。该网络由两个并行分支组成,第1个分支基于轻量级的CNN结构,第2个分支基于ViT结构。通过双向特征交互模块BiFIM(bidirectional feature interaction module)解决CNN Branch和ViT Branch之间特征不对称的问题,最后将两个分支的特征融合并对驾驶员行为进行检测。实验在自建的多视角驾驶员数据集上展开,验证集准确率达到97.18%,参数量为38.22 MB,计算量为271.20×10^(6)。研究表明:轻量级BiViTNet提高了驾驶员分心行为识别的准确率,可以在一定程度上辅助驾驶员的行车安全。 展开更多
关键词 交通运输工程 智能交通 分心行为检测 双分支并行双向交互神经网络 视觉转换器 轻量级模型
在线阅读 下载PDF
基于深度卷积-Tokens降维优化视觉Transformer的分心驾驶行为实时检测 被引量:6
2
作者 赵霞 李朝 +2 位作者 付锐 葛振振 王畅 《汽车工程》 EI CSCD 北大核心 2023年第6期974-988,1009,共16页
针对基于端到端深度卷积神经网络的驾驶行为检测模型缺乏全局特征提取能力以及视觉Transformer(vision transformer,ViT)模型不擅长捕捉底层特征和模型参数量较大的问题,本文提出一种基于深度卷积和Tokens降维的ViT模型用于驾驶人分心... 针对基于端到端深度卷积神经网络的驾驶行为检测模型缺乏全局特征提取能力以及视觉Transformer(vision transformer,ViT)模型不擅长捕捉底层特征和模型参数量较大的问题,本文提出一种基于深度卷积和Tokens降维的ViT模型用于驾驶人分心驾驶行为实时检测,并通过开展与其他模型的对比试验、所提模型的消融试验和模型注意力区域的可视化试验充分验证了所提模型的优越性。本文所提模型的平均分类准确率和精确率分别为96.93%和96.95%,模型参数量为21.22 M,基于真实车辆平台在线推理速度为23.32 fps,表明所提模型能够实现实时分心驾驶行为检测。研究结果有利于人机共驾系统的控制策略制定和分心预警。 展开更多
关键词 汽车工程 分心驾驶行为检测模型 视觉Transformer 多头注意力机制 卷积神经网络 Tokens降维
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部