在高分辨率遥感图像分割方法中,分形网络演化算法(fractal net evolution approach,FNEA)是一种经典的影像对象构造方法。但在计算影像对象之间的异质性时,使用根据经验选择的固定权值会导致该算法不能很好地适应不同属性的影像对象分...在高分辨率遥感图像分割方法中,分形网络演化算法(fractal net evolution approach,FNEA)是一种经典的影像对象构造方法。但在计算影像对象之间的异质性时,使用根据经验选择的固定权值会导致该算法不能很好地适应不同属性的影像对象分割。针对这一问题,提出了一种改进的FNEA方法,根据不同影像对象的空间和光谱特征,自适应地计算空间判据权值和紧凑度判据权值,并将不同光谱分量对光谱判据的贡献引入到影像对象之间异质性的计算中。计算机仿真实验结果表明,该文提出的算法对不同属性的影像对象具有很好的适应性,与同类算法相比,图像分割结果得到了较好的改善。展开更多
在面向对象多光谱图像分割方法中,初始对象特征往往无法反映真实区域的整体特征,从而产生错误的合并结果。针对以上问题,提出采用简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素与结构张量粗分割相结合的方法对其进...在面向对象多光谱图像分割方法中,初始对象特征往往无法反映真实区域的整体特征,从而产生错误的合并结果。针对以上问题,提出采用简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素与结构张量粗分割相结合的方法对其进行改进。先采用SLIC超像素方法产生初始过分割结果,用结构张量产生尺度空间下的粗分割结果,再用粗分割结果指导超像素进行初步合并,使分形网络演化方法(fractal net evolution approach,FNEA)所面向的初始对象能够表达该区域的整体特征,增强后续合并过程对噪声的抗性。将该方法与传统FNEA的分割结果对比表明,该方法具有良好的抗噪能力,对复杂城区高空间分辨率多光谱图像能够得到较好的分割结果。展开更多
Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass duri...Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass during undersea mining, the fractal evolution mechanisms of rock fracture in undersea metallic deposits of Sanshandao Gold Mine were studied by fractal theory. The experimental researches on granite mechanics test in undersea deposit indicate that with the increase of load, the granite deformation energy and the fractal dimension of acoustic emission(FDAE) increase gradually. However, after reaching the peak stress of specimen, the fractal dimensions of acoustic emission(FDAEs) decrease and the granite specimen fails. Therefore, the fractal dimension evolution of rock failure can be divided into four stages, which are fissure inoculation stage, fissure growth stage, fissure expansion stage and fracture instability stage, respectively. By calculating and analyzing the damage photographs of rock specimens in Sanshandao Gold Mine, the fractal dimension of rock fissure is 1.4514, which is close to the average value of FDAE during granite destruction, i.e., 1.4693. Similar simulation experiments of undersea mining show that with the excavation proceeding, the FDAE in rock stratum increases gradually, and when the thickness of the isolation roof is less than 40 m, the FDAE begins to decrease, and meanwhile the sign of water inrush emerges. The numerical simulation researches on the plastic zone distribution of undersea mining in Sanshandao Gold Mine indicate that the fractal dimension of plastic zone(FDPZ) where the failure characteristics occur is 1.4598, close to the result of similar simulation experiment of 1.4364, which shows the sign of water inrush. Meanwhile, the thickness of the isolation roof for undersea mining should be more than 40 m, which is consistent with the results of similar simulation experiment. In Sanshandao Gold Mine, the rock fissures in undersea mining were observed by borehole photography and the rock mass deformation was monitored by multi-point displacement meters, and at the same time the fractal dimensions of strata borehole fissure distribution and energy release ratio(ERR) of rock mass were calculated by fractal principle, which are 1.2328 and 1.2685, respectively. The results demonstrate that rock deformation and fissure propagation are both in the second stage of fissure growth, and have not reached the fourth stage of fracture instability. Therefore, the conclusion can be obtained that the undersea mining in Sanshandao Gold Mine is safe at present.展开更多
文摘在高分辨率遥感图像分割方法中,分形网络演化算法(fractal net evolution approach,FNEA)是一种经典的影像对象构造方法。但在计算影像对象之间的异质性时,使用根据经验选择的固定权值会导致该算法不能很好地适应不同属性的影像对象分割。针对这一问题,提出了一种改进的FNEA方法,根据不同影像对象的空间和光谱特征,自适应地计算空间判据权值和紧凑度判据权值,并将不同光谱分量对光谱判据的贡献引入到影像对象之间异质性的计算中。计算机仿真实验结果表明,该文提出的算法对不同属性的影像对象具有很好的适应性,与同类算法相比,图像分割结果得到了较好的改善。
文摘在面向对象多光谱图像分割方法中,初始对象特征往往无法反映真实区域的整体特征,从而产生错误的合并结果。针对以上问题,提出采用简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素与结构张量粗分割相结合的方法对其进行改进。先采用SLIC超像素方法产生初始过分割结果,用结构张量产生尺度空间下的粗分割结果,再用粗分割结果指导超像素进行初步合并,使分形网络演化方法(fractal net evolution approach,FNEA)所面向的初始对象能够表达该区域的整体特征,增强后续合并过程对噪声的抗性。将该方法与传统FNEA的分割结果对比表明,该方法具有良好的抗噪能力,对复杂城区高空间分辨率多光谱图像能够得到较好的分割结果。
基金Project(2019sdzy05)supported by the Major Scientific and Technological Innovation Project of Shandong Province,ChinaProjects(51674288,51974359)supported by the National Natural Science Foundation of China。
文摘Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass during undersea mining, the fractal evolution mechanisms of rock fracture in undersea metallic deposits of Sanshandao Gold Mine were studied by fractal theory. The experimental researches on granite mechanics test in undersea deposit indicate that with the increase of load, the granite deformation energy and the fractal dimension of acoustic emission(FDAE) increase gradually. However, after reaching the peak stress of specimen, the fractal dimensions of acoustic emission(FDAEs) decrease and the granite specimen fails. Therefore, the fractal dimension evolution of rock failure can be divided into four stages, which are fissure inoculation stage, fissure growth stage, fissure expansion stage and fracture instability stage, respectively. By calculating and analyzing the damage photographs of rock specimens in Sanshandao Gold Mine, the fractal dimension of rock fissure is 1.4514, which is close to the average value of FDAE during granite destruction, i.e., 1.4693. Similar simulation experiments of undersea mining show that with the excavation proceeding, the FDAE in rock stratum increases gradually, and when the thickness of the isolation roof is less than 40 m, the FDAE begins to decrease, and meanwhile the sign of water inrush emerges. The numerical simulation researches on the plastic zone distribution of undersea mining in Sanshandao Gold Mine indicate that the fractal dimension of plastic zone(FDPZ) where the failure characteristics occur is 1.4598, close to the result of similar simulation experiment of 1.4364, which shows the sign of water inrush. Meanwhile, the thickness of the isolation roof for undersea mining should be more than 40 m, which is consistent with the results of similar simulation experiment. In Sanshandao Gold Mine, the rock fissures in undersea mining were observed by borehole photography and the rock mass deformation was monitored by multi-point displacement meters, and at the same time the fractal dimensions of strata borehole fissure distribution and energy release ratio(ERR) of rock mass were calculated by fractal principle, which are 1.2328 and 1.2685, respectively. The results demonstrate that rock deformation and fissure propagation are both in the second stage of fissure growth, and have not reached the fourth stage of fracture instability. Therefore, the conclusion can be obtained that the undersea mining in Sanshandao Gold Mine is safe at present.