为了有效刻画实际业务流性能状态,结合分形布朗运动模型(Fractional Brownian Motion,FBM)和元胞自动机提出一种新的预测方法 TSPCA(Traffic State Prediction method based on Cellular Automaton).该方法首先基于FBM模型推导了平均队...为了有效刻画实际业务流性能状态,结合分形布朗运动模型(Fractional Brownian Motion,FBM)和元胞自动机提出一种新的预测方法 TSPCA(Traffic State Prediction method based on Cellular Automaton).该方法首先基于FBM模型推导了平均队列长度和平均时延的数学表达式,同时利用定义的元胞演化规则对估算结果进行修正,以提高预测精度.最后,通过NS2和MATLAB进行仿真实验,深入分析了影响该方法的关键因素,发现缓冲区较小时流量性能将由短相关特性支配,而缓冲区较大时性能由长相关支配,重置效应和截断效应对业务流性能影响较大.并且对比FARIMA和ARIMA的预测结果,证明该方法具有较好的适应性.展开更多
文摘为了有效刻画实际业务流性能状态,结合分形布朗运动模型(Fractional Brownian Motion,FBM)和元胞自动机提出一种新的预测方法 TSPCA(Traffic State Prediction method based on Cellular Automaton).该方法首先基于FBM模型推导了平均队列长度和平均时延的数学表达式,同时利用定义的元胞演化规则对估算结果进行修正,以提高预测精度.最后,通过NS2和MATLAB进行仿真实验,深入分析了影响该方法的关键因素,发现缓冲区较小时流量性能将由短相关特性支配,而缓冲区较大时性能由长相关支配,重置效应和截断效应对业务流性能影响较大.并且对比FARIMA和ARIMA的预测结果,证明该方法具有较好的适应性.