设X(t)(t∈R^N)是d维分式Browa运动,本文研究X(t)的k重点集的Hausdorff维数。证明了:若P_1,…,P_k是R^N中内部不空的紧集,P=multiply from i=1 to k P_i, L_k(P)={x∈R^d|存在(t_1,…,t_k)∈P,使X(t_1)=…=X(t_k)=x},则当N≤ad,Nk>(k...设X(t)(t∈R^N)是d维分式Browa运动,本文研究X(t)的k重点集的Hausdorff维数。证明了:若P_1,…,P_k是R^N中内部不空的紧集,P=multiply from i=1 to k P_i, L_k(P)={x∈R^d|存在(t_1,…,t_k)∈P,使X(t_1)=…=X(t_k)=x},则当N≤ad,Nk>(k-1)ad时,P{dim L_k(P)=Nk/a-(k-1)d}>0,当N>ad时,P{dim L_k(P)=d}>0。当N≤ad时,对R^N\{0}中互不相交的紧集E_1,…,E_k得到了dim(X(E_1)∩…∩X(E_k))的一个上界和dim(X(E_1)∩X(E_2))的下界,从而当k=2时,证明了Testard猜想。展开更多
基金Supported by the National Natural Science Foundation of China ( 11061032,30973586)the Young Fund of Northwest University for Nationalities (X2009-003)
文摘设X(t)(t∈R^N)是d维分式Browa运动,本文研究X(t)的k重点集的Hausdorff维数。证明了:若P_1,…,P_k是R^N中内部不空的紧集,P=multiply from i=1 to k P_i, L_k(P)={x∈R^d|存在(t_1,…,t_k)∈P,使X(t_1)=…=X(t_k)=x},则当N≤ad,Nk>(k-1)ad时,P{dim L_k(P)=Nk/a-(k-1)d}>0,当N>ad时,P{dim L_k(P)=d}>0。当N≤ad时,对R^N\{0}中互不相交的紧集E_1,…,E_k得到了dim(X(E_1)∩…∩X(E_k))的一个上界和dim(X(E_1)∩X(E_2))的下界,从而当k=2时,证明了Testard猜想。
基金Li Linyuan’s research is supported in part by the NSF of USA (DMS-0604499)Chen Ping’s research issupported by National Natural Science Foundation of China (10671032)