Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi...Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.展开更多
The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailab...The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value(CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities.Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.展开更多
Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train wa...Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.展开更多
Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In ...Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In network-based control systems,error codes induced by noisy channel can significantly decrease the quality of control.To solve this problem,the network-based control system with delay and noisy channel is firstly modeled as an asynchronous dynamic system(ADS).Secondly,conditions of packet with error codes(PEC)loss rate by using M-ary modulation are obtained based on dynamic output feedback scheme.Thirdly,more importantly,the selection principle of M-ary modulation is proposed according to the measured signal-to-noise ratio(SNR)and conditions of PEC loss rate.Finally,system stability is analyzed and controller is designed through Lyapunov function and linear matrix inequality(LMI)scheme,and numerical simulations are made to demonstrate the effectiveness of the proposed scheme.展开更多
基金Projects(61201302,61372023,61671197)supported by the National Natural Science Foundation of ChinaProject(201308330297)supported by the State Scholarship Fund of ChinaProject(LY15F010009)supported by Zhejiang Provincial Natural Science Foundation,China
文摘Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.
基金Project(2012CB725400)supported by the National Basic Research Program of ChinaProjects(71271023,71322102,7121001)supported by the National Natural Science Foundation of China
文摘The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value(CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities.Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.
基金Projects(61134002,51305358)supported by the National Natural Science Foundation of ChinaProject(PIL1303)supported by the Open Project of State Key Laboratory of Precision Measurement Technology and Instruments,ChinaProject(2682014BR032)supported by the Fundamental Research Funds for the Central Universities,China
文摘Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.
基金Project(61172022) supported by the National Natural Science Foundation of ChinaProject(GDW20151100010) supported by the State Administration of Foreign Experts Affairs of China
文摘Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In network-based control systems,error codes induced by noisy channel can significantly decrease the quality of control.To solve this problem,the network-based control system with delay and noisy channel is firstly modeled as an asynchronous dynamic system(ADS).Secondly,conditions of packet with error codes(PEC)loss rate by using M-ary modulation are obtained based on dynamic output feedback scheme.Thirdly,more importantly,the selection principle of M-ary modulation is proposed according to the measured signal-to-noise ratio(SNR)and conditions of PEC loss rate.Finally,system stability is analyzed and controller is designed through Lyapunov function and linear matrix inequality(LMI)scheme,and numerical simulations are made to demonstrate the effectiveness of the proposed scheme.