为了满足电磁仿真数值计算日益增高的速度和精度的需求,针对单机内存需求和计算负荷需求都比较大的矛盾,提出基于分布式并行机群环境的并行计算划分和并行存储划分的算法设计思想,并且给出了基于行列循环数据划分的并行计算算法描述。...为了满足电磁仿真数值计算日益增高的速度和精度的需求,针对单机内存需求和计算负荷需求都比较大的矛盾,提出基于分布式并行机群环境的并行计算划分和并行存储划分的算法设计思想,并且给出了基于行列循环数据划分的并行计算算法描述。在此基础上进行了实验验证,用MPI+FORTRAN和MPI+C编程实现了对大矩阵求逆的分布式高斯消元,并进行了性能评估和实验验证,在国内外超级计算中心平台上的实验结果表明所完成的工作对于系统的电磁仿真计算具有应用价值,该算法和代码实现可应用于电磁仿真计算的矩量法MOM(Method of Mom)中。展开更多
针对具有物理机制的分布式水文模型对大流域、长序列模拟计算时间长、模拟速度慢的问题,引入基于GPU的并行计算技术,实现分布式水文模型WEP-L(water and energy transfer processes in large river basins)产流过程的并行化。选择鄱阳...针对具有物理机制的分布式水文模型对大流域、长序列模拟计算时间长、模拟速度慢的问题,引入基于GPU的并行计算技术,实现分布式水文模型WEP-L(water and energy transfer processes in large river basins)产流过程的并行化。选择鄱阳湖流域为实验区,采用计算能力为8.6的NVIDIA RTX A4000对算法性能进行测试。研究表明:提出的基于GPU的分布式水文模型并行算法具有良好的加速效果,当线程总数越接近划分的子流域个数(计算任务量)时,并行性能越好,在实验流域WEP-L模型子流域单元为8712个时,加速比最大达到2.5左右;随着计算任务量的增加,加速比逐渐增大,当实验流域WEP-L模型子流域单元增加到24897个时,加速比能达到3.5,表明GPU并行算法在大尺度流域分布式水文模型计算中具有良好的发展潜力。展开更多
文摘为了满足电磁仿真数值计算日益增高的速度和精度的需求,针对单机内存需求和计算负荷需求都比较大的矛盾,提出基于分布式并行机群环境的并行计算划分和并行存储划分的算法设计思想,并且给出了基于行列循环数据划分的并行计算算法描述。在此基础上进行了实验验证,用MPI+FORTRAN和MPI+C编程实现了对大矩阵求逆的分布式高斯消元,并进行了性能评估和实验验证,在国内外超级计算中心平台上的实验结果表明所完成的工作对于系统的电磁仿真计算具有应用价值,该算法和代码实现可应用于电磁仿真计算的矩量法MOM(Method of Mom)中。
文摘针对具有物理机制的分布式水文模型对大流域、长序列模拟计算时间长、模拟速度慢的问题,引入基于GPU的并行计算技术,实现分布式水文模型WEP-L(water and energy transfer processes in large river basins)产流过程的并行化。选择鄱阳湖流域为实验区,采用计算能力为8.6的NVIDIA RTX A4000对算法性能进行测试。研究表明:提出的基于GPU的分布式水文模型并行算法具有良好的加速效果,当线程总数越接近划分的子流域个数(计算任务量)时,并行性能越好,在实验流域WEP-L模型子流域单元为8712个时,加速比最大达到2.5左右;随着计算任务量的增加,加速比逐渐增大,当实验流域WEP-L模型子流域单元增加到24897个时,加速比能达到3.5,表明GPU并行算法在大尺度流域分布式水文模型计算中具有良好的发展潜力。