期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LightGBM-SSA-ELM的新疆羊舍CO_(2)浓度预测 被引量:21
1
作者 尹航 吕佳威 +3 位作者 陈耀聪 岑红蕾 李景彬 刘双印 《农业机械学报》 EI CAS CSCD 北大核心 2022年第1期261-270,共10页
为减少肉羊集约化养殖过程中因环境恶化产生的应激反应,精准调控CO_(2)质量浓度,提出了基于分布式梯度提升框架(LightGBM)、麻雀搜索算法(SSA)融合极限学习机(ELM)的CO_(2)质量浓度预测模型。首先利用LightGBM筛选出与CO_(2)质量浓度相... 为减少肉羊集约化养殖过程中因环境恶化产生的应激反应,精准调控CO_(2)质量浓度,提出了基于分布式梯度提升框架(LightGBM)、麻雀搜索算法(SSA)融合极限学习机(ELM)的CO_(2)质量浓度预测模型。首先利用LightGBM筛选出与CO_(2)质量浓度相关的重要特征,降低预测模型的输入维度;然后选择Sigmoid为激活函数,使用具有较强非线性处理能力的单隐含层ELM神经网络算法构建CO_(2)质量浓度预测模型;最后通过麻雀智能优化算法对ELM模型中所需要的超参数进行优化,并将优化后模型应用于新疆玛纳斯集约化肉羊养殖基地。试验结果表明,该模型预测均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R^(2))分别为0.0213 mg/L、0.0136 mg/L和0.9886,综合性能指标优于支持向量回归(SVR)、反向传播神经网络(BPNN)、长短记忆神经网络(LSTM)、门限循环单元(GRU)和LightGBM等;CO_(2)质量浓度预测曲线贴近真实曲线,具有良好的预测效果,能有效满足集约化肉羊养殖过程中CO_(2)质量浓度精准预测及调控要求。 展开更多
关键词 羊舍 集约化养殖 CO_(2)质量浓度预测 极限学习机 麻雀搜索算法 分布式梯度提升框架
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部