期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进分布式极限学习机的电站锅炉NO_x排放预测算法 被引量:2
1
作者 徐晨晨 续欣莹 +1 位作者 阎高伟 韩晓霞 《太原理工大学学报》 北大核心 2017年第6期946-952,共7页
提出了一种改进的分布式极限学习机的电站锅炉NO_x排放特性建模方法。引入分布式和岭回归理论,提升了极限学习机预测算法的泛化性能和预测准确率。采用改进的MapReduce编程框架对提出的算法模型进行并行化改进,提高其处理大数据的能力... 提出了一种改进的分布式极限学习机的电站锅炉NO_x排放特性建模方法。引入分布式和岭回归理论,提升了极限学习机预测算法的泛化性能和预测准确率。采用改进的MapReduce编程框架对提出的算法模型进行并行化改进,提高其处理大数据的能力。选用某660 MW电站锅炉提供的真实运行数据进行分析,并在Hadoop集群上进行实验,结果表明该模型对NO_x排放有着较好的拟合和预测能力,且提出的算法具有优异的并行性能。 展开更多
关键词 NOX排放 海量数据 MAPREDUCE 分布式极限学习机
在线阅读 下载PDF
基于二次分解与MAML-MHA-DELM的电力行业碳排放预测模型研究
2
作者 张新生 张红文 聂达文 《安全与环境学报》 北大核心 2025年第9期3386-3399,共14页
为了有效预测电力行业碳排放趋势,解决在碳排放预测中遇到的非线性、复杂性等问题,研究提出了一种新型电力行业碳排放预测模型。该模型基于二次分解方法,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decompos... 为了有效预测电力行业碳排放趋势,解决在碳排放预测中遇到的非线性、复杂性等问题,研究提出了一种新型电力行业碳排放预测模型。该模型基于二次分解方法,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)与变分模态分解(Variational Mode Decomposition,VMD),以处理数据的非线性和复杂性。此外,采用模型无关元学习(Model-Agnostic Meta-Learning,MAML)优化结合多头注意力机制(Multi-Head Attention,MHA)增强特征提取的分布式极限学习机(Distributed Extreme Learning Machine,DELM)构建预测框架,以提高模型的准确性和泛化性能。首先,根据政府间气候变化专门委员会(The Intergovernmental Panel on Climate Change,IPCC)中方法计算电力行业化石燃料在1991—2022年的碳排放情况;其次,采用广义灰色关联分析(Grey Relation Analysis,GRA)与皮尔逊相关系数(Pearson Correlation Coefficient,Pearson)对影响因素进行筛选,并筛选出一次能源生产总量、城镇化率和电力行业固定投资等11个相关性影响因素;再次,使用CEEMDAN-VMD二次分解将因变量电力行业碳排放量分解成4个多频模态,并将4个模态分别代入经MAML-MHA算法优化的DELM模型进行预测;最后,将各分解序列的预测值进行逆归一化相加,即可得到电力行业碳排放预测值,并进行消融试验。结果显示,CEEMDAN-VMD-MAML-MHA-DELM模型性能最优,其均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)及决定系数(R^(2))分别为0.3494万t、0.3763万t、0.8383%和0.9893。这表明该模型在电力行业碳排放预测方面效果显著,能为电力行业低碳发展提供一定参考。 展开更多
关键词 环境工程学 自适应噪声完备集合经验模态分解 变分模态分解 分布式极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部