期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLO v5的宁夏草原蝗虫识别模型研究
被引量:
10
1
作者
马宏兴
张淼
+3 位作者
董凯兵
魏淑花
张蓉
王顺霞
《农业机械学报》
EI
CAS
CSCD
北大核心
2022年第11期270-279,共10页
针对草原蝗虫图像具有样本收集困难、目标较小和目标多尺度等技术难点,基于YOLO v5网络,提出了一种复杂背景下多尺度蝗虫目标检测识别模型YOLO v5-CB,用于宁夏草原常见蝗虫检测。改进模型YOLO v5-CB针对蝗虫原始样本量较少的问题,使用Cy...
针对草原蝗虫图像具有样本收集困难、目标较小和目标多尺度等技术难点,基于YOLO v5网络,提出了一种复杂背景下多尺度蝗虫目标检测识别模型YOLO v5-CB,用于宁夏草原常见蝗虫检测。改进模型YOLO v5-CB针对蝗虫原始样本量较少的问题,使用CycleGAN网络扩充蝗虫数据集;针对蝗虫图像中的小目标特征,使用ConvNeXt来保留小目标蝗虫的特征;为有效解决蝗虫图像尺度特征变换较大问题,在颈部特征融合使用Bi-FPN结构,来增强网络对多尺度目标的特征融合能力。实验结果表明,在对宁夏草原常见亚洲小车蝗、短星翅蝗、中华剑角蝗进行检测识别时,YOLO v5-CB的识别精度可达98.6%,平均精度均值达到96.8%,F1值为98%,与Faster R-CNN、YOLO v3、YOLO v4、YOLO v5模型相比,识别精度均有提高。将改进的蝗虫检测识别模型YOLO v5-CB与研发的分布式可扩展生态环境数据采集系统结合,构建了基于4G网络的Web端蝗虫识别平台,可对观测点的蝗虫图像进行长期实时检测。目前,该平台已在宁夏回族自治区盐池县大水坑、黄记场、麻黄山等地的草原生态环境数据获取中得到了应用,可对包括宁夏草原蝗虫信息在内的多种生态环境信息进行长期检测和跟踪,为虫情防治等提供决策依据。
展开更多
关键词
蝗虫识别
YOLO
v5
CycleGAN
ConvNeXt
Bi-FPN
分布式可扩展系统
在线阅读
下载PDF
职称材料
题名
基于改进YOLO v5的宁夏草原蝗虫识别模型研究
被引量:
10
1
作者
马宏兴
张淼
董凯兵
魏淑花
张蓉
王顺霞
机构
北方民族大学电气信息工程学院
宁夏农林科学院植物保护研究所
宁夏回族自治区草原工作站
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2022年第11期270-279,共10页
基金
宁夏自然科学基金项目(2019AAC03122)
宁夏农业高质量发展和生态保护科技创新项目(NGSB-2021-14-05)
北方民族大学校级项目(2019KJ43、2019KYQD49)
文摘
针对草原蝗虫图像具有样本收集困难、目标较小和目标多尺度等技术难点,基于YOLO v5网络,提出了一种复杂背景下多尺度蝗虫目标检测识别模型YOLO v5-CB,用于宁夏草原常见蝗虫检测。改进模型YOLO v5-CB针对蝗虫原始样本量较少的问题,使用CycleGAN网络扩充蝗虫数据集;针对蝗虫图像中的小目标特征,使用ConvNeXt来保留小目标蝗虫的特征;为有效解决蝗虫图像尺度特征变换较大问题,在颈部特征融合使用Bi-FPN结构,来增强网络对多尺度目标的特征融合能力。实验结果表明,在对宁夏草原常见亚洲小车蝗、短星翅蝗、中华剑角蝗进行检测识别时,YOLO v5-CB的识别精度可达98.6%,平均精度均值达到96.8%,F1值为98%,与Faster R-CNN、YOLO v3、YOLO v4、YOLO v5模型相比,识别精度均有提高。将改进的蝗虫检测识别模型YOLO v5-CB与研发的分布式可扩展生态环境数据采集系统结合,构建了基于4G网络的Web端蝗虫识别平台,可对观测点的蝗虫图像进行长期实时检测。目前,该平台已在宁夏回族自治区盐池县大水坑、黄记场、麻黄山等地的草原生态环境数据获取中得到了应用,可对包括宁夏草原蝗虫信息在内的多种生态环境信息进行长期检测和跟踪,为虫情防治等提供决策依据。
关键词
蝗虫识别
YOLO
v5
CycleGAN
ConvNeXt
Bi-FPN
分布式可扩展系统
Keywords
locust recognition
YOLO v5
CycleGAN
ConvNeXt
Bi-FPN
distributed scalable system
分类号
S812.6 [农业科学—草业科学]
TP391.41 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLO v5的宁夏草原蝗虫识别模型研究
马宏兴
张淼
董凯兵
魏淑花
张蓉
王顺霞
《农业机械学报》
EI
CAS
CSCD
北大核心
2022
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部