新型电力系统面临惯性降低、调频容量减少导致频率失稳风险上升的问题,需求侧响应(demand response,DR)作为灵活的调频技术,成为解决电力系统频率失稳的重要手段。首先,建立需求侧资源参与互联电力系统调频的频率稳定分析及负荷频率控制...新型电力系统面临惯性降低、调频容量减少导致频率失稳风险上升的问题,需求侧响应(demand response,DR)作为灵活的调频技术,成为解决电力系统频率失稳的重要手段。首先,建立需求侧资源参与互联电力系统调频的频率稳定分析及负荷频率控制(load frequency control,LFC)模型;其次,设计需求侧资源参与互联电力系统调频的分布式模型预测控制(distributed model predictive control,DMPC)算法,推导DMPC控制DR参与互联电力系统调频的预测模型,进而设计互联电力系统DMPC的调频控制器;最后,仿真分析自动发电控制方式、DR方式、DR容量和DR通信延时对系统频率稳定性的影响。仿真算例表明,所设计的调频控制器具有良好的调频性能,DR能提升系统频率暂态稳定。展开更多
针对持续扰动下的分布式状态耦合非线性系统,提出一种新的多耦合分布式经济模型预测控制(Economic model predictive control,EMPC)策略.由于耦合非线性系统的经济性能函数的非凸性和非正定性,首先引入关于经济最优平衡点的正定辅助函...针对持续扰动下的分布式状态耦合非线性系统,提出一种新的多耦合分布式经济模型预测控制(Economic model predictive control,EMPC)策略.由于耦合非线性系统的经济性能函数的非凸性和非正定性,首先引入关于经济最优平衡点的正定辅助函数和相应的辅助优化问题.接着,利用辅助函数的最优值函数构造原始分布式EMPC的一类隐式收缩约束.然后,建立状态耦合分布式EMPC的递推可行性和闭环系统关于最优经济平衡点的输入到状态稳定性(Input-to-state stability,ISS).最后,以耦合的四个连续搅拌釜反应器(Continuous stirred tank reactors,CSTRs)为例,验证本文所提策略的有效性.展开更多
为解决复杂工况下分布式驱动电车(Distributed Drive Electric Vehicle,DDEV)的驱动防滑问题,基于模块化提出了一种多智能体分布式协同控制策略。首先,采用模块化的方法搭建了整车结构,将各轮毂电机车轮和控制器整体视为一个智能体,根...为解决复杂工况下分布式驱动电车(Distributed Drive Electric Vehicle,DDEV)的驱动防滑问题,基于模块化提出了一种多智能体分布式协同控制策略。首先,采用模块化的方法搭建了整车结构,将各轮毂电机车轮和控制器整体视为一个智能体,根据车轮运动学和整车运动学建立智能体的滑转率模型;然后,设计了基于多智能体的分布式模型预测控制策略,以多约束条件下的协同优化为目标函数,实现驱动防滑,在解决驱动力不足问题的同时,达到了低能耗和舒适性;最后,利用Simulink软件和CarSim软件进行仿真实验,实验结果证明了所提控制策略的有效性,为分布式驱动的进一步应用提供了新的控制方法。展开更多
文摘新型电力系统面临惯性降低、调频容量减少导致频率失稳风险上升的问题,需求侧响应(demand response,DR)作为灵活的调频技术,成为解决电力系统频率失稳的重要手段。首先,建立需求侧资源参与互联电力系统调频的频率稳定分析及负荷频率控制(load frequency control,LFC)模型;其次,设计需求侧资源参与互联电力系统调频的分布式模型预测控制(distributed model predictive control,DMPC)算法,推导DMPC控制DR参与互联电力系统调频的预测模型,进而设计互联电力系统DMPC的调频控制器;最后,仿真分析自动发电控制方式、DR方式、DR容量和DR通信延时对系统频率稳定性的影响。仿真算例表明,所设计的调频控制器具有良好的调频性能,DR能提升系统频率暂态稳定。
文摘针对持续扰动下的分布式状态耦合非线性系统,提出一种新的多耦合分布式经济模型预测控制(Economic model predictive control,EMPC)策略.由于耦合非线性系统的经济性能函数的非凸性和非正定性,首先引入关于经济最优平衡点的正定辅助函数和相应的辅助优化问题.接着,利用辅助函数的最优值函数构造原始分布式EMPC的一类隐式收缩约束.然后,建立状态耦合分布式EMPC的递推可行性和闭环系统关于最优经济平衡点的输入到状态稳定性(Input-to-state stability,ISS).最后,以耦合的四个连续搅拌釜反应器(Continuous stirred tank reactors,CSTRs)为例,验证本文所提策略的有效性.
文摘为解决复杂工况下分布式驱动电车(Distributed Drive Electric Vehicle,DDEV)的驱动防滑问题,基于模块化提出了一种多智能体分布式协同控制策略。首先,采用模块化的方法搭建了整车结构,将各轮毂电机车轮和控制器整体视为一个智能体,根据车轮运动学和整车运动学建立智能体的滑转率模型;然后,设计了基于多智能体的分布式模型预测控制策略,以多约束条件下的协同优化为目标函数,实现驱动防滑,在解决驱动力不足问题的同时,达到了低能耗和舒适性;最后,利用Simulink软件和CarSim软件进行仿真实验,实验结果证明了所提控制策略的有效性,为分布式驱动的进一步应用提供了新的控制方法。