Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Str...Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.展开更多
Wireless sensor network nodes (WSN nodes) have limited computing power, storage ca-pacity, conmmunication capabilities and energy and WSN nodes are easy to be paralyzed by Sybil at- tack. In order to prevent Sybil a...Wireless sensor network nodes (WSN nodes) have limited computing power, storage ca-pacity, conmmunication capabilities and energy and WSN nodes are easy to be paralyzed by Sybil at- tack. In order to prevent Sybil attacks, a new key distribution scheme for wireless sensor networks is presented. In this scheme, the key inforrmtion and node ID are associated, and then the attacker is dif-ficult to forge identity ID and the key inforrmtion corresponding to ID can not be forged. This scheme can use low-power to resist the Syhil attack and give full play to the resource advantages of the cluster head. The computing, storage and corrn^ni- cation is rminly undertaken by the cluster head o- verhead to achieve the lowest energy consumption and resist against nodes capture attack. Theoretical analysis and experimental results show that com- pared with the traditional scheme presented in Ref. [14], the capture rate of general nodes of cluster re-duces 40%, and the capture rate of cluster heads reduces 50%. So the scheme presented in this pa-per can improve resilience against nodes capture at- tack and reduce node power consumption.展开更多
文摘Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.
基金This paper was supported by the National Science Foundation for Young Scholars of China under Crant No.61001091 .
文摘Wireless sensor network nodes (WSN nodes) have limited computing power, storage ca-pacity, conmmunication capabilities and energy and WSN nodes are easy to be paralyzed by Sybil at- tack. In order to prevent Sybil attacks, a new key distribution scheme for wireless sensor networks is presented. In this scheme, the key inforrmtion and node ID are associated, and then the attacker is dif-ficult to forge identity ID and the key inforrmtion corresponding to ID can not be forged. This scheme can use low-power to resist the Syhil attack and give full play to the resource advantages of the cluster head. The computing, storage and corrn^ni- cation is rminly undertaken by the cluster head o- verhead to achieve the lowest energy consumption and resist against nodes capture attack. Theoretical analysis and experimental results show that com- pared with the traditional scheme presented in Ref. [14], the capture rate of general nodes of cluster re-duces 40%, and the capture rate of cluster heads reduces 50%. So the scheme presented in this pa-per can improve resilience against nodes capture at- tack and reduce node power consumption.