分布式资源大规模并网要求配电网的灵活调控能力不断增强,如何充分利用多层级灵活性资源协助系统运行成为目前亟待解决的问题。为此,文中提供一种支撑多种资源接入配电网的分级自治协同策略。首先,分析多层级下灵活性资源特性,对分布式...分布式资源大规模并网要求配电网的灵活调控能力不断增强,如何充分利用多层级灵活性资源协助系统运行成为目前亟待解决的问题。为此,文中提供一种支撑多种资源接入配电网的分级自治协同策略。首先,分析多层级下灵活性资源特性,对分布式资源出力采用概率模型以减少其不确定性因素影响。其次,构建主变-馈线-台区分层分区优化调度模型,台区层进行内部自治并将等值结果传递给馈线层,馈线层基于网络架构和资源运行特性进行区域划分,实现兼顾系统安全性和经济性的主配协同优化,并采用基于谱惩罚参数的自适应交替方向乘子法(spectral penalty parameter based adaptive alternating direction method of multipliers,SPPA-ADMM)进行求解。最后,选用改进的IEEE 33节点算例进行仿真,仿真结果表明文中所采用的并行控制方式能有效提高优化求解的效率,验证了所提策略对多种分布式资源分级接入配电网运行调控具有指导意义。展开更多
为充分发挥主动配电网提高电力系统灵活性和消纳可再生能源的潜力,该文提出一种计及综合能源系统(integrated energy system,IES)动态特性的主动配电网与输电网协同机组组合模型。一方面引入电-气-热综合能源系统实现多能耦合,使主动配...为充分发挥主动配电网提高电力系统灵活性和消纳可再生能源的潜力,该文提出一种计及综合能源系统(integrated energy system,IES)动态特性的主动配电网与输电网协同机组组合模型。一方面引入电-气-热综合能源系统实现多能耦合,使主动配电网对多能互补的支持融入到输电网的调度优化中;另一方面,为提高调度决策的灵活性,将天然气网与热网的动态特性纳入到输配协同机组组合模型中。基于此模型,根据电-气-热IES多能耦合特性和输-配物理互联特征构建协同优化框架。以联络线交换功率作为耦合变量,将其等效为虚拟能源站,采用目标级联分析法对所提模型进行解耦,从而得到一个独立的输电网优化问题和多个主动配电网局部优化问题。为提高计算效率,采用增量分段方法处理天然气Weymouth方程的非凸性,将该文模型转换为混合整数线性规划问题,保证迭代过程的收敛性,进一步降低计算负担。以T6D2系统和T118D10系统为例,验证所提模型和方法的有效性。展开更多
文摘分布式资源大规模并网要求配电网的灵活调控能力不断增强,如何充分利用多层级灵活性资源协助系统运行成为目前亟待解决的问题。为此,文中提供一种支撑多种资源接入配电网的分级自治协同策略。首先,分析多层级下灵活性资源特性,对分布式资源出力采用概率模型以减少其不确定性因素影响。其次,构建主变-馈线-台区分层分区优化调度模型,台区层进行内部自治并将等值结果传递给馈线层,馈线层基于网络架构和资源运行特性进行区域划分,实现兼顾系统安全性和经济性的主配协同优化,并采用基于谱惩罚参数的自适应交替方向乘子法(spectral penalty parameter based adaptive alternating direction method of multipliers,SPPA-ADMM)进行求解。最后,选用改进的IEEE 33节点算例进行仿真,仿真结果表明文中所采用的并行控制方式能有效提高优化求解的效率,验证了所提策略对多种分布式资源分级接入配电网运行调控具有指导意义。
文摘为充分发挥主动配电网提高电力系统灵活性和消纳可再生能源的潜力,该文提出一种计及综合能源系统(integrated energy system,IES)动态特性的主动配电网与输电网协同机组组合模型。一方面引入电-气-热综合能源系统实现多能耦合,使主动配电网对多能互补的支持融入到输电网的调度优化中;另一方面,为提高调度决策的灵活性,将天然气网与热网的动态特性纳入到输配协同机组组合模型中。基于此模型,根据电-气-热IES多能耦合特性和输-配物理互联特征构建协同优化框架。以联络线交换功率作为耦合变量,将其等效为虚拟能源站,采用目标级联分析法对所提模型进行解耦,从而得到一个独立的输电网优化问题和多个主动配电网局部优化问题。为提高计算效率,采用增量分段方法处理天然气Weymouth方程的非凸性,将该文模型转换为混合整数线性规划问题,保证迭代过程的收敛性,进一步降低计算负担。以T6D2系统和T118D10系统为例,验证所提模型和方法的有效性。