期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于分层生成对抗网络的短临降水预报方法研究 被引量:1
1
作者 曾强胜 郭敬天 +2 位作者 任鹏 黄文华 王宁 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期23-32,共10页
本文使用深度学习方法中的生成对抗网络(GAN)来提升短临降水预报的准确率,提出了一个基于历史雷达回波图序列预测未来雷达回波图序列的分层生成对抗网络(HGAN)方法。HGAN方法由全局生成器和局部鉴别器两部分组成,全局生成器以多子网的... 本文使用深度学习方法中的生成对抗网络(GAN)来提升短临降水预报的准确率,提出了一个基于历史雷达回波图序列预测未来雷达回波图序列的分层生成对抗网络(HGAN)方法。HGAN方法由全局生成器和局部鉴别器两部分组成,全局生成器以多子网的层次结构构建,采用上采样过程训练模型,捕捉雷达回波的演变趋势,有利于生成清晰的未来雷达回波图。局部鉴别器根据局部区域将预测的雷达回波图与观测的雷达回波图区分开,并引入缓冲区机制,保存历史预测序列,使最终预测的结果更加符合时序性。两者以对抗的方式加以训练,得到的模型能够生成足够清晰且接近真实的未来雷达回波序列,对于回波强度极值和范围的刻画更为准确。对HGAN和GAN进行测试集检验及个例分析,分析结果验证了HGAN对雷达回波预测的有效性。同时在检验反射率阈值相同的情况下,HGAN的临界成功指数命中率高于GAN,而虚警率低于GAN,且在相同预测时长下,HGAN结构相似性指数(SSIM)优于GAN。 展开更多
关键词 短临降水 雷达回波 分层生成对抗网络 全局生成 局部鉴别器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部