现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协...现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。展开更多
双馈异步电机在实际工程运行情况下是一种高度非线性动态系统,并且由于其参数随环境的强变化性,常规方法难以实时得到其高精度参数。结合粒子群算法的高效多模态收敛性能以及免疫机理全局优化能力强等特点,研究了分层型免疫协同进化粒...双馈异步电机在实际工程运行情况下是一种高度非线性动态系统,并且由于其参数随环境的强变化性,常规方法难以实时得到其高精度参数。结合粒子群算法的高效多模态收敛性能以及免疫机理全局优化能力强等特点,研究了分层型免疫协同进化粒子群算法(co-evolutionary particle swarm optimization algorithm based on hierarchical-particle immune,HICPSO)智能计算模型参数。将该方法应用于双馈电机参数辨识与建模,提出了分层型免疫协同进化粒子群算法的双馈电机在线参数辨识。仿真结果表明该算法只需要采集控制过程中的数据,不需要数据手册的电机设计值等其他参数,且能在双馈电机运行实时跟随电机参数变化。展开更多
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中...为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。展开更多
文摘现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。
文摘双馈异步电机在实际工程运行情况下是一种高度非线性动态系统,并且由于其参数随环境的强变化性,常规方法难以实时得到其高精度参数。结合粒子群算法的高效多模态收敛性能以及免疫机理全局优化能力强等特点,研究了分层型免疫协同进化粒子群算法(co-evolutionary particle swarm optimization algorithm based on hierarchical-particle immune,HICPSO)智能计算模型参数。将该方法应用于双馈电机参数辨识与建模,提出了分层型免疫协同进化粒子群算法的双馈电机在线参数辨识。仿真结果表明该算法只需要采集控制过程中的数据,不需要数据手册的电机设计值等其他参数,且能在双馈电机运行实时跟随电机参数变化。
文摘为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。